05-0107 SDMS 42084

Pre-Design Investigation Report for Newell Street Area II Removal Action

Volume I of II

General Electric Company Pittsfield, Massachusetts

February 2003

Corporate Environmental Programs General Electric Company 100 Woodlawn Avenue, Pittsfield, MA 01201

SDMS 42084

Transmitted Via Overnight Courier

February 20, 2003

Mr. Bryan Olson EPA Project Coordinator U.S. Environmental Protection Agency EPA New England One Congress Street, Suite 1100 Boston, Massachusetts 02114-2023

Re: GE-Pittsfield/Housatonic River Site

Newell Street Area II (GECD450) Pre-Design Investigation Report

Dear Mr. Olson:

Enclosed is General Electric's (GE's) *Pre-Design Investigation Report for the Newell Street Area II Removal Action*. This report summarizes activities performed and results obtained during the pre-design investigation for Newell Street Area II. In addition, this report presents other data that have been obtained and will be incorporated, as appropriate, in future RD/RA evaluations.

For the most part, the results of the recent pre-design activities, including the information obtained from other investigations at this area, are sufficient to characterize the soils within Newell Street Area II, and thus to support future RD/RA activities. However, some additional information is needed to support GE's future technical evaluations and preparation of a Conceptual RD/RA Work Plan. Therefore, this report also presents a proposal for the additional pre-design activities identified as necessary to prepare a Conceptual RD/RA Work Plan.

Please call Richard Gates or me if you have any questions about this report.

Sincerely,

Andrew T. Silfer, P.E.

GE Project Coordinator

Enclosure

V:\GE_Pittsfield_CD_Newell_St_II_Reports_453ltr.doc

andrew T. Silfer / NME

Pre-Design Investigation Report for Newell Street Area II Removal Action

Volume I of II

General Electric Company Pittsfield, Massachusetts

February 2003

Table of Contents

Volume I - Report

Section	1.	Introduction	1-1
	1.1	General	1-1
	1.2	Format of Document	1-2
	1.3	Description of Newell Street Area II	
Section	2.	Summary of Pre-Design Investigations	2-
	2.1	General	2-
	2.2	Summary of Pre-Design Sampling and Analysis Activities	2-
	2.3	Modifications to Pre-Design Investigation Sampling and Analysis Activities	2-2
	2.4	Summary of Available Soil Data	2-3
	2.5	Data Quality Assessment	
		2.5.1 Pre-Design Investigation Soil Data	
		2.5.2 EPA Soil Data	2-
		2.5.3 Historical Soil Data	
	2.6	Assessment of Potential Data Needs	
Section	3.	Future Activities and Schedule	3-
	3.1	General	3-
	3.2	Supplemental Pre-Design Soil Investigations	3-
	3.3	Additional Pre-Design Activities	3-2
	3.4		

Tables

- 1 Pre-Design Investigation Soil Sampling Data for PCBs
- 2 Pre-Design Investigation Soil Sampling Data for Appendix IX+3 Constituents
- 3 Historical Soil Sampling Data for PCBs
- 4 Historical Soil Sampling Data for Appendix IX+3 Constituents
- 5 EPA Soil Sampling Data for PCBs
- 6 EPA Soil Sampling Data for Appendix IX+3 Constituents

Figures

- 1 Site Location Map
- 2 Site Map
- 3 Existing and Proposed PCB Soil Sample Locations
- 4 Existing and Proposed Appendix IX + 3 Soil Sample Locations (0- to 1-Foot Depth Increment)
- Existing and Proposed Appendix IX + 3 Soil Sample Locations (1- to 3-Foot Depth Increment)
- 6 Existing Appendix IX + 3 Soil Sample Locations (3- to 6-Foot Depth Increment)
- Existing and Proposed Appendix IX + 3 Soil Sample Locations (6- to 10-Foot Depth Increment)
- 8 Existing and Proposed Appendix IX + 3 Soil Sample Locations (10- to 15-Foot Depth Increment)

Volume II - Appendices (bound separately)

Appendices

- A Soil Boring Logs
- B Soil Analytical Results
- C Soil Sampling Data Validation Report

1. Introduction

1.1 General

On October 27, 2000, a Consent Decree (CD) executed in 1999 by the General Electric Company (GE), the United States Environmental Protection Agency (EPA), the Massachusetts Department of Environmental Protection (MDEP), and several other government agencies was entered by the United States District Court for the District of Massachusetts. The CD requires (among other things) the performance of Removal Actions to address polychlorinated biphenyls (PCBs) and other hazardous constituents present in soils, sediment, and groundwater in several Removal Action Areas (RAAs) located in or near Pittsfield, Massachusetts. These RAAs are part of the GE-Pittsfield/Housatonic River Site. For each Removal Action, the CD and accompanying Statement of Work for Removal Actions Outside the River (SOW) (Appendix E to the CD) establish Performance Standards that must be achieved, as well as specific work plans and other documents that must be prepared to support the response actions for each RAA. These work plans/documents include a Pre-Design Investigation Work Plan, a Pre-Design Investigation Report, a Conceptual Removal Design/Removal Action (RD/RA) Work Plan (for some Removal Actions), and a Final RD/RA Work Plan.

This document constitutes GE's *Pre-Design Investigation Report for Newell Street Area II Removal Action* (Pre-Design Report). It summarizes the pre-design soil investigations performed by GE within Newell Street Area II, as well as related, concurrent activities conducted by EPA. This report also evaluates the sufficiency of the data from those investigations, in combination with data available from prior soil investigations at this RAA, to satisfy the pre-design soil sampling requirements established in the SOW and to support the development of a Conceptual RD/RA Work Plan for the Removal Action.

The pre-design investigation activities for Newell Street Area II were performed in accordance with documents entitled *Pre-Design Investigation Work Plan for the Newell Street Area II Removal Action* (PDI Work Plan) dated October 2001 and *Newell Street Area II Pre-Design Investigation Work Plan Addendum* (PDI Work Plan Addendum) dated May 2002 (collectively, the PDI Work Plans). These documents were conditionally approved by the EPA in letters dated April 18, 2002 and August 21, 2002, respectively. The field investigations described in the PDI Work Plans, as modified by the EPA August 21, 2002 conditional approval letter, were completed by GE between September 26 and October 25, 2002.

In addition to the pre-design soil data recently collected by GE, certain other data are available and will be incorporated, as appropriate, in future RD/RA evaluations. The data include the following:

- During preparation of the PDI Work Plans, the usability of existing soil data was assessed. From that effort, it
 was determined that certain data could be used to satisfy the pre-design investigation requirement for this area
 and/or to support future RD/RA evaluations. These usable data have been compiled and are presented in this PreDesign Report.
- In addition to the existing data mentioned above, some additional PCB and Appendix IX+3 data associated with several existing soil samples were obtained following submittal of the PDI Work Plans. As discussed in Section 2.5 of this report, these data were reviewed for usability in a manner consistent with the approach used for the other historical data (as presented in the PDI Work Plans). These data were determined to be acceptable to support future RD/RA evaluations.
- While performing the pre-design investigations, EPA representatives were present in the field to provide oversight of GE's sampling activities. During these activities, EPA representatives collected "split" samples (i.e., soil samples from the same locations and depths being sampled by GE) for separate laboratory analyses.

This Pre-Design Report presents the soil data from all of the investigations listed above. In total, the soil data available to support RD/RA evaluations include results from approximately 930 soil samples collected from approximately 310 locations. Depending on the specific sample location and depth, these sampling data include results for PCBs and/or other constituents listed in Appendix IX of 40 CFR Part 264 (excluding pesticides and herbicides), plus three additional constituents: benzidine, 2-chloroethylvinyl ether, and 1,2-diphenylhydrazine (Appendix IX+3).

1.2 Format of Document

Pursuant to the CD and SOW, this report summarizes the results of the pre-design investigation activities and provides an assessment regarding the sufficiency of the available soil data to support the design and evaluation of response actions to achieve the soil-related Performance Standards for the Newell Street Area II Removal Action, as well as the need for additional information to support the preparation of the Conceptual RD/RA Work Plan.

For the most part, the results of the recent pre-design activities (including the information obtained from other investigations at this RAA) are sufficient to characterize the soils within Newell Street Area II, and thus to support future RD/RA activities. However, some additional information is needed to support GE's future technical evaluations and preparation of a Conceptual RD/RA Work Plan. For example, certain supplemental soil sampling has been identified and proposed herein. In addition, detailed site mapping to verify the location of structures and surface cover types will need to be prepared for Newell Street Area II.

The remainder of this section provides a brief description of Newell Street Area II. Section 2 describes the pre-design investigations conducted by GE, provides an overview of the available soil data from this area, and assesses remaining soil-related data needs. Section 3 presents a proposal for the additional pre-design activities and a proposed schedule for performing those additional pre-design activities.

Note that the pre-design activities summarized in this report pertain to soils only. Newell Street Area II is one of several RAAs that have been combined to form the Plant Site 1 Groundwater Management Area (GMA 1) for groundwater quality monitoring and non-aqueous phase liquid (NAPL) monitoring/recovery. GE currently operates several groundwater/NAPL recovery wells within the central portion of Newell Street Area II, and performs additional groundwater and NAPL-related investigations under the GMA 1 groundwater and NAPL monitoring programs. Activities concerning groundwater quality and NAPL are addressed separately as part of activities concerning GMA 1.

1.3 Description of Newell Street Area II

Newell Street Area II occupies an area of approximately eight acres and is generally bounded by the Housatonic River riverbank to the north, Newell Street and residential properties to the south, the Newell Street Area I RAA to the east, and Sackett Street to the west (Figure 1). This area originally consisted of land containing certain oxbows or low-lying areas of the Housatonic River. Rechannelization and straightening of the Housatonic River in the early 1940s by the City of Pittsfield and United States Army Corps of Engineers separated these oxbows and low-lying areas from the active course of the river. The oxbows and low-lying areas were subsequently filled with various materials from a variety of sources, resulting in its current surface elevations and topography.

Newell Street Area II is composed of the following 10 properties:

- Parcel I9-7-1;
- Parcel J9-23-1;
- Parcel J9-23-2;
- Parcel J9-23-3;
- Parcel J9-23-4;
- Parcel J9-23-5;
- Parcel J9-23-6;
- Parcel J9-23-8;
- Parcel J9-23-12; and
- City of Pittsfield Property (located to the southwest of Parcel J9-23-8).

Each of these properties is identified on Figure 2. The largest of these properties (Parcel J9-23-12) is owned by GE and portions of that property have been historically used as an employee parking lot. The other properties are undeveloped and, pursuant to the CD and SOW, are considered to be "recreational" properties for the purposes of developing appropriate response actions. Finally, for properties associated with Newell Street Area II that are adjacent to the Housatonic River (Parcels I9-7-1, J9-23-1, J9-23-8, and J9-23-12), only the non-riverbank portions of these properties are included in the Newell Street Area II RAA. The riverbank portions of these parcels have been addressed by a separate Removal Action under the CD (i.e., the Upper ½ Mile Reach Removal Action); those riverbank portions are identified on Figure 2. RD/RA evaluations of Newell Street Area II will be performed for each of the 10 parcels as separate averaging areas within this RAA.

2. Summary of Pre-Design Investigations

2.1 General

As discussed in Section 1 of this Pre-Design Report, the data that will be used to support future RD/RA evaluations of soils within Newell Street Area II will be derived from several different sources and sampling activities. The sampling activities conducted as part of the pre-design investigations are summarized in Section 2.2. Section 2.3 lists modifications made to the PDI Work Plans while performing the field activities. A summary of the available data to support future technical evaluations and the preparation of a Conceptual RD/RA Work Plan is in Section 2.4. The quality of the available data is assessed in Section 2.5, and Section 2.6 assesses whether any additional or remaining data are needed.

2.2 Summary of Pre-Design Sampling and Analysis Activities

The pre-design investigations conducted between September 26 and October 25, 2002, in accordance with the PDI Work Plans as conditionally approved by EPA, were performed on behalf of GE by Blasland, Bouck & Lee, Inc. (BBL), while analytical services were provided by CT&E Environmental Services, Inc. While performing these activities, Weston Solutions, Inc. (Weston) performed oversight activities on behalf of EPA, including collection and analysis of split samples. In total, the pre-design soil sampling effort (including the combined efforts of GE and EPA) involved collecting and analyzing more than 200 soil samples from 108 locations. Each sample location was surveyed using Global Positioning Systems (GPS) and conventional methods. The sample locations, including the locations of usable historical samples, as well as samples collected by GE and EPA during the pre-design investigation, are identified on Figure 3 (for PCB samples) and Figures 4 through 8 (for samples analyzed for other Appendix IX+3 constituents).

With certain exceptions (discussed in Section 2.3), the sample locations, frequencies, depths, and analytes associated with the pre-design investigations were consistent with the EPA-approved PDI Work Plans. All field and analytical activities conducted by GE were performed in accordance with GE's approved *Field Sampling Plan/Quality Assurance Project Plan* (FSP/QAPP). Soil boring logs are provided in Appendix A to this report.

Soil samples collected by GE for PCB analysis during the pre-design investigation were analyzed for Aroclor-specific PCBs by EPA Method 8082. The PCB results were reported on a dry-weight basis with a detection limit of

approximately 0.05 parts per million (ppm) for all Aroclors. Select soil samples collected by GE were also analyzed for Appendix IX+3 constituents (excluding pesticides and herbicides) utilizing methods and reporting limits consistent with those presented in the FSP/QAPP. In addition, certain soil samples were provided to Weston for additional analyses on behalf of EPA.

2.3 Modifications to Pre-Design Investigation Sampling and Analysis Activities

While performing the pre-design investigation, several modifications to the sampling program proposed in the PDI Work Plans (as modified by the EPA) were implemented based on field conditions and communications with EPA or its representatives. The following modifications to the work scope identified in the PDI Work Plans were implemented:

- Nine soil sample locations (RAA13-A91, RAA13-A99, RAA13-B78, RAA13-B79, RAA13-C91, RAA13-H88, RAA13-H93, RAA13-I94, and RAA13-Z90) were shifted slightly (i.e., less than 10 feet) from the locations presented in the PDI Work Plans due to access restrictions at the proposed location (e.g., presence of a fence line); and
- The location proposed in the PDI Work Plans for soil boring RAA13-F97 was in an area of the RAA being used by the adjacent property owner as a garden. To avoid disturbance/damage of the garden, this soil boring was relocated 40 feet to the north of the proposed location and samples were collected from the revised location. However, before those samples were analyzed, GE proposed and EPA agreed that existing soil samples collected from boring location J9-23-12-SB-3 would appropriately characterize the soils in the area of the original proposed sample location and, that hence, the samples collected from the revised location need not be analyzed. Therefore, no samples were analyzed either from the original RAA13-F97 or from the revised location.

None of the modifications identified above significantly affect the overall PCB pre-design characterization of soils within Newell Street Area II. Although some samples were slightly relocated from the anticipated locations, the new locations were not significantly displaced from the original grid nodes. In addition, GE identified and EPA approved the use of an alternate existing sample location to characterize soil conditions in the vicinity of grid node F97 in lieu of either the original or relocated RAA13-F97.

2.4 Summary of Available Soil Data

For Newell Street Area II, the soil data available to support future technical evaluations and the preparation of a Conceptual RD/RA Work Plan include the results of GE's recent pre-design investigations, as well as data available from prior investigations and data collected by EPA. The following table summarizes the current data set (not including QA/QC analyses) for several constituent groups:

Analytical Parameter	GE Pre- Design Analyses	GE Historical Soil Analyses	EPA Pre-design and Historical Analyses	Total Soil Analyses
PCBs	166	634	83	883
Volatile Organic Compounds (VOCs)	81	60	1	142
Semi-Volatile Organic Compounds (SVOCs)	79	56	9	144
Polychlorinated dibenzo-p- dioxins/Polychlorinated dibenzofurans (PCDDs/PCDFs)	85	35	7	127
Inorganics	79	51	8	138

The locations from which the soil samples collected for PCB analysis are shown on Figure 3. Figures 4 through 8 illustrate the locations of the soil samples collected for Appendix IX+3 analyses by relevant depth increment (i.e., the 0- to 1-foot, 1- to 3-foot, 3- to 6-foot, 6- to 10-foot, and 10- to 15-foot depth increments).

The analytical results for soil samples collected within or near Newell Street Area II are provided in Tables 1 through 6. Tables 1 and 2 provide the results of the recent pre-design investigations for PCBs and other Appendix IX+3 constituents, respectively, while historical soil data are summarized in Tables 3 and 4 for PCBs and other Appendix IX+3 constituents, respectively. Tables 5 and 6 provide the results for the EPA data from samples that were split with GE as part of the pre-design investigation, as well as historical data provided by EPA, for PCBs and other Appendix IX+3 constituents, respectively. All of these tables that present Appendix IX+3 data summarize the results for constituents that were detected in one or more samples during the respective investigations. A complete listing of the Appendix IX+3 laboratory results is included in Appendix B. All the data provided in these nine tables have been utilized to evaluate the need for additional soil sampling prior to conducting RD/RA activities for Newell Street Area II.

2.5 Data Quality Assessment

This section of the Pre-Design Report summarizes the results of the data quality assessment performed for the recent pre-design data collected by GE and EPA. In addition, since submittal of the PDI Work Plans and during tabulation of the historical data, certain changes to the historical soil data set have been identified and are described in this section.

2.5.1 Pre-Design Investigation Soil Data

For the pre-design activities performed by GE, quality control samples (i.e., matrix spike/matrix spike duplicates, field duplicates, and field blanks) were collected in accordance with the FSP/QAPP. The FSP/QAPP also presents the quality control criteria and corrective action procedures to be followed for each analytical and field-generated quality control sample. Overall project quality assurance was provided by following the procedures for sample collection and analysis, corrective action, and data reporting and validation specified in the FSP/QAPP.

All of the GE pre-design soil analytical data have undergone data review validation in accordance with Section 7.5 of the FSP/QAPP. The results of this data validation are presented in Appendix C. As discussed in that report, 99.9% of the GE pre-design data are considered to be usable, which is greater than the minimum required usability of 90% as specified in the FSP/QAPP. All of the analytical results for PCBs, VOCs, PCDDs/PCDFs, and inorganic constituents were found to be usable, while 99.9% of the SVOC results were of acceptable quality.

The rejected sample data from these investigations included the analytical results for three individual SVOCs from sample location RAA13-B99 (1- to 3-foot depth increment) due to zero percent recovery of matrix spike compounds. The matrix spikes of these compounds were performed in duplicate. Similar results were obtained in both analyses of the matrix spikes, demonstrating matrix interference. These limited rejections do not affect the overall usability of the pre-design investigation data set to characterize these constituents at Newell Street Area II because sufficient usable SVOC data exist from other, nearby sample locations. Thus, the overall pre-design soil data set meets the data quality objectives set forth in the PDI Work Plans and the FSP/QAPP.

2.5.2 EPA Soil Data

GE understands that the analytical results for the split soil samples analyzed by EPA were validated by EPA prior to their transmittal to GE. Therefore, these data are considered acceptable for use in future RD/RA evaluations.

2.5.3 Historical Soil Data

As indicated in the PDI Work Plans, the historical soil data were previously reviewed for overall quality. That data review resulted in the designation of some data as usable both to satisfy pre-design investigation requirements and for future RD/RA evaluations, other data as supplemental data for use in RD/RA evaluations, and other data as rejected or eliminated. The data presented in this report consist of the data in the first two of these categories. Based on the reviews in the PDI Work Plans, these data were found to be of acceptable quality for use in satisfying RD/RA requirements for the response actions for Newell Street Area II (except for certain "supplemental" Appendix IX+3 data that the PDI Work Plans indicated would be re-evaluated in the Conceptual RD/RA Work Plan after the PCB-related response actions have been defined). During tabulation of the historical data for presentation in this PDI Report, additional information was obtained and a few exceptions to the original quality assessment were identified and are explained below.

With respect to the historical PCB soil data:

- Some additional PCB data that were not previously included in the PDI Work Plans have been identified. These data were obtained from Parcels J9-3-1, J9-3-2, J9-3-7, J9-23-6, J9-23-7, J9-23-9, J9-23-12, J9-23-13, and the Ontario Street right-of-way (Figure 2), which were investigated by GE between February 17, 1997 and August 13, 1998. These sample locations are situated adjacent to Newell Street Area II, and the Theissen polygons associated with them may extend within this RAA. Assessment of these data (44 PCB soil samples) resulted in the determination that the results are usable to support future RD/RA evaluations. Sample locations J9-3-1-SB-1, J9-3-2-SB-1, J9-3-7-SB-1, J9-23-7-SS-9 through J9-23-7-SS-12, J9-23-9-SB-1, NS-163-C12, NS-163-C13, and ONT-SS-1 through ONT-SS-3 have been added to Figure 3, and the PCB data associated with the samples collected from these locations are included in Table 3.
- In the PDI Work Plans, two samples were misidentified. Specifically, location J9-23-7-5 was identified as a surface soil sample when in fact samples were collected from the following depth increments: 0- to 0.5- foot, 0.5-

to 1-foot, 1- to 2-foot, and 2- to 4-foot. Also, sample location HATH-SB-2 was identified as having soil samples collected to four feet. However, samples were also collected and analyzed from the 4- to 6-foot and 6- to 8-foot depth increments. All five of the additional samples were analyzed for PCBs and have been added to Table 3, and the symbol representing J9-23-7-5 on Figure 3 was revised to reflect a boring location.

- In the PDI Work Plans, data for samples collected from locations NS-24(B), NS-27(B), NS-33, WMECO-1, WMECO-2, WMECO-3, and SS-1 through SS-42 (83 samples total) were rejected due to analytical method, and specifically based on the fact that the laboratory did not analyze for Aroclor-specific PCBs, which is required by EPA Method 8082. Based on a subsequent review of other soil samples collected from within Newell Street Area II on or near the same date as these rejected samples, the data collected at locations NS-15 through NS-20, NS-21(B) through NS-25(B), NS-26, NS-27(B), NS-28, and NS-29 have also been rejected due to analytical method (i.e., the reporting of data as total PCBs rather than individual Aroclors). These sample locations have been removed from Figure 3, and the associated PCB data are not listed in Table 3.
- Samples collected from locations GE-13 and GE-14 on June 14, 1995 were listed in the PDI Work Plans as having documentation from summary tables from prior investigations. Since submission of the PDI Work Plans, the Certificates of Analysis for these two samples were located. It was determined that the data were reported as total PCBs rather than individual Aroclors. Therefore, these data will not be used in future RD/RA evaluations.

With respect to the historical Appendix IX+3 soil data:

During tabulation of historical Appendix IX+3 data (subsequent to the PDI Work Plans), additional laboratory documentation was located for analyses that were performed but not previously accounted for in the PDI Work Plans. These data were reviewed and determined to be usable for future RD/RA evaluations and are listed below.

Sample Location	Parameters	Sample ID	Depth Interval	Date Collected
GE-10	VOCs	RNG101012	10-12	12/11/1991
N2SC-10	VOCs	CS1015	10-15	4/14/1999
NS-9	VOCs & SVOCs	RN09B1214	12-14	10/25/1991

 Certain of the Appendix IX+3 data collected by the EPA were identified in the PDI Work Plans as having been analyzed for VOCs, SVOCs, PCDDs/PCDFs, and inorganics. However, the following samples were not analyzed for VOCs:

Sample Location	Sample ID	Depth Interval	Date Collected
SL0114	T047-SL0114	1-1.5	8/13/1998
SL0131	T055-SL0131	0-0.5	8/14/1998
SL0475	T038-SL0475	1-1.5	9/10/1998
SL0490	T050-SL0490	0-0.5	9/11/1998
SL0516	T054-SL0516	1-1.5	9/15/1998

Table 6 and Figures 4 and 5 have been revised to reflect that VOCs were not analyzed for in the above mentioned samples. This modification does not significantly affect the overall usability of the Appendix IX+3 pre-design investigation data set to characterize VOCs at Newell Street Area II because sufficient usable VOC data exist from other, nearby sample locations.

- Soil sample location RB-11 was inadvertently included in Table 2 of the PDI Work Plans as "Potential Appendix IX Supplemental". This sample location is outside of the RAA boundary and therefore will not be used in future RD/RA evaluations for Appendix IX+3 constituents. Since it was not identified as a required characterization sample, the removal of this sample from the Appendix IX+3 pre-design investigation data set has no effect on the characterization of the soils within Newell Street Area II.
- Soil sample location N2SC-09 was listed in the PDI Work Plans as having existing VOC data for the 14- to 15- foot depth increment. The recent data review found that these VOC data were from the 8- to 10-foot depth increment, not the 14-to 15-foot depth increment.

2.6 Assessment of Potential Data Needs

In accordance with Section 3.2 of the SOW, the Pre-Design Report is required to consider the sufficiency of the available data in terms of supporting subsequent RD/RA activities, and whether any additional or remaining data are needed. If additional data are needed, the Pre-Design Report is to include a proposal for further studies/investigations, as well as a schedule for such activities and the submission of any supplemental pre-design reports.

The PDI Work Plans (as modified by the EPA August 21, 2002 conditional approval letter) identified the activities proposed by GE to characterize existing soil conditions, satisfy the investigation requirements specified in the CD and SOW, and thus support the preparation of a Conceptual RD/RA Work Plan for Newell Street Area II. Based on completion of the pre-design activities, the available soil characterization data are, for the most part, sufficient to support the necessary evaluations for this RAA, including an assessment of current soil conditions and the need for, type of, and scope of response actions to achieve the applicable Performance Standards. Although minor modifications to the scope of sampling specified in the PDI Work Plans were implemented during the field activities, none of the modifications (described in Section 2.3) affected the overall characterization of soils within Newell Street Area II. Nevertheless, GE has identified data needs to support future RD/RA evaluations and allow preparation of the Conceptual RD/RA Work Plan. These data needs are described below, and proposals to satisfy these data needs are provided in Section 3.2.

- As part of the pre-design investigation activities, a more detailed utility assessment was performed. This utility assessment revealed that the 20-inch sanitary sewer line located in the western portion of the RAA is within the boundaries of the thin strip of land discussed below owned by the City of Pittsfield, as illustrated on Figure 3, and thus needed to be moved on the map approximately 15 to 20 feet to the east of where it was shown in the PDI Work Plans. Due to this change, a 220-foot portion of the 50-foot-wide utility band along this sewer line does not have PCB data to appropriately characterize the soils consistent with prior pre-design investigations (i.e., PCB data every 100 to 150 linear feet to the depth of the utility). Thus, samples will need to be collected for PCB analysis from a boring in this area to the depth of the utility (which is 7 feet below the ground surface) i.e., from 1-to 3-foot, 3- to 6-foot, and 6- to 7-foot depth increments.
- Additional PCB data are also necessary to support RD/RA evaluations within the 50-foot-wide utility band for the 48-inch sewer line running along the northern portion of the RAA, as shown on Figure 3. These data needs result from the rejection of certain PCB data that had previously been considered supplemental data in the PDI Work Plans, as discussed in Section 2.5. After the rejection of these samples, a 230-foot segment of the 48-inch sewer line did not have sufficient PCB data to characterize the soils in the proximity of the utility. Additional soil samples from the 1- to 3-foot, 3- to 6-foot, 6- to 10-foot, and 10- to 12-foot depth increments at a boring location within this segment of the utility band will need to be collected and analyzed for PCBs to characterize soils to depth of utility (i.e., 12 feet below the ground surface).
- GE has recently determined that the thin strip of land (discussed in the first bullet point above) designated as City
 of Pittsfield property on Figure 2 (which is situated to the southwest of Parcel J9-23-8 and on which overhead

electric utility lines and a sanitary sewer line are located) is in fact owned by the City, whereas this strip of land was previously thought to be an easement rather than a separately owned property. Accordingly, to allow this City-owned property to be evaluated as a separate averaging area, it will be necessary to collect and analyze additional soil samples from this parcel for Appendix IX+3 data (for one or more groups of Appendix IX+3 constituents) from five samples to be collected at various depth intervals from three locations within this City-owned parcel.

To supplement the existing data (pre-design and historical) for the RAA, GE plans to collect 10 soil samples from one surface location and three boring locations to be analyzed for PCBs and/or other Appendix IX+3 constituents as described in Section 3.2 of this report.

3. Future Activities and Schedule

3.1 General

As discussed in Section 2.6, certain data need to be collected prior to developing the Conceptual RD/RA Work Plan for Newell Street Area II. The additional pre-design soil sampling activities that are proposed to satisfy those data needs are described in Section 3.2. Other remaining pre-design activities are presented in Section 3.3. Section 3.4 presents the proposed schedule for future activities and summarizes the anticipated contents of the Conceptual RD/RA Work Plan.

3.2 Supplemental Pre-Design Soil Investigations

As discussed in Section 2.6, additional soil samples need to be collected and analyzed for PCBs within the 50-foot-wide utility bands for the 20-inch and 48-inch sanitary sewer lines. To fill the 220-foot gap in the utility band for the 20-inch sewer line, GE proposes to collect three samples from boring location RAA13-C88 to the depth of this utility (7 feet below ground surface). These samples will be collected from the 1-to 3-foot, 3- to 6-foot, and 6- to 7-foot depth increments and will be analyzed for PCBs. Additionally, to fill the 230-foot gap in PCB data in the area of the 48-inch sanitary sewer line, four samples will be collected from boring location RAA13-Z90 to the depth of this utility (12 feet below ground surface). These samples will be collected from the 1-to 3-foot, 3- to 6-foot, 6- to 10-foot, and 10- to 12-foot depth increments and analyzed for PCBs. The proposed PCB sample locations are shown on Figure 3.

In addition, Section 2.6 identifies the need for additional soil sampling and analysis for non-PCB Appendix IX+3 constituents from within the City of Pittsfield property. For this property, GE proposes to collect a surface (0- to 1-foot) soil sample from one location (SL0131) and to advance borings at two locations (RAA13-C88 and RAA13-H93) and collect two subsurface soil samples from each boring. The surface soil sample at location SL0131 is necessary because the PDI Work Plans inadvertently identified a sample previously collected from that location as having been analyzed for VOCs when it had not been analyzed for these constituents, as explained in Section 2.5.3. Hence, this new surface soil sample will be analyzed for VOCs. In addition, GE proposes to collect soil samples from the 1-to 3-foot and 6- to 7-foot depth increments at boring RAA13-C88 and from the 1- to 3-foot and 10- to 12-foot depth increments at boring RAA13-H93 for Appendix IX+3 analyses. The deeper samples from each of these borings

will not be analyzed for PCDDs/PCDFs because analytical data for these constituents are already available from two previous samples at these depths on the City of Pittsfield property -- i.e., the 6- to 10-foot and the 10- to 15-foot depth increments at sample location RAA13-H93. The proposed Appendix IX+3 soil sample locations are shown on Figures 4, 5, 7, and 8.

The proposed supplemental soil sampling and analyses are summarized in the table below.

Sample	Sample		Ana	alyses to be F	Performed	
Location	Depth (feet)	PCBs	VOCs	SVOCs	Inorganics	PCDDs/PCDFs
RAA13-C88	1-3	X	Х	X	X	X
RAA13-C88	3-6	X	No Analysis	No Analysis	No Analysis	No Analysis
RAA13-C88	6-7	X	X	X	X	No Analysis
RAA13-H93	1-3	No Analysis	X	Х	X	X
RAA13-H93	10-15	No Analysis	X	Х	X	No Analysis
RAA13-Z90	1-3	X	No Analysis	No Analysis	No Analysis	No Analysis
RAA13-Z90	3-6	X	No Analysis	No Analysis	No Analysis	No Analysis
RAA13-Z90	6-10	X	No Analysis	No Analysis	No Analysis	No Analysis
RAA13-Z90	10-12	Х	No Analysis	No Analysis	No Analysis	No Analysis
SL0131	0-1	No Analysis	X	No Analysis	No Analysis	No Analysis

All of these sampling and analysis activities will be conducted in accordance with the procedures set forth in GE's approved FSP/QAPP. The results of these investigations will be presented in a supplement to this Pre-Design Report on the schedule described in Section 3.4.

3.3 Additional Pre-Design Activities

In addition to the supplemental soil investigations described in Section 3.2, GE has identified certain other activities that may or will be performed to support the preparation of the Conceptual RD/RA Work Plan. These activities are described below.

The available site mapping for Newell Street Area II is generally not of sufficient detail to support the type of detailed RD/RA evaluations that will be performed by GE. The current mapping, as depicted on the figures included with this report, was primarily generated from aerial photogrammetry mapping conducted in 1990. Although this mapping is

useful for identifying prominent features within this RAA (e.g., utilities, roadways, and surface-water features) and the approximate locations of soil sample locations (as shown on Figures 3 through 8), additional detailed site mapping is required to support the development of spatial average PCB concentrations and other RD/RA actions. GE will develop an overall detailed site map for Newell Street Area II that will include the following information:

- Existing structures;
- Paved, gravel, and unpaved areas;
- Surface elevations and topography;
- Property boundaries and easements (e.g., utilities);
- Selected utilities (e.g., manholes, catch basins, and telephone poles);
- Existing soil sample locations; and
- Other prominent site features.

This mapping will be prepared by a licensed Land Surveyor. Once the site mapping is completed, GE will be able to precede with the RD/RA evaluations.

As a separate matter, during the development of the Conceptual RD/RA Work Plan, the RD/RA evaluations may indicate that soil removal is necessary to achieve the applicable soil-related Performance Standards. Under the CD and SOW, GE has several options available for the disposition of removed materials. To further assess these options and develop the Conceptual RD/RA Work Plan, GE may collect additional soil samples for characterization purposes, specifically to identify whether the subject material(s) are potentially classified as hazardous waste pursuant to EPA's regulations under the Resource Conservation and Recovery Act (RCRA) set forth in 40 CFR Part 264. If such sampling is identified, GE will follow the procedures established in its *Waste Characterization Plan*, which is a component of the *Project Operations Plan*.

3.4 Schedule for Future Activities

GE proposes to conduct the supplemental soil investigations described in Section 3.2 and submit a supplement to this Pre-Design Report within 90 days from receipt of EPA approval of this Pre-Design Report. This schedule assumes that no major weather-related delays are encountered and that no significant additional data needs are identified based on comments from EPA or otherwise. If these or other factors cause a delay in the schedule proposed above, GE will notify EPA and propose a revised schedule for submitting the supplement.

The supplement to this Pre-Design Report will include a proposed schedule for submitting the Conceptual RD/RA Work Plan for the Newell Street Area II Removal Action. The contents of the Conceptual RD/RA Work Plan will be consistent with Section 3.3 of the SOW and will address the following topics:

- Results of the pre-design studies/investigations;
- Evaluation of the areas and depths subject to response actions to meet the PCB-related Performance Standards set forth in the CD and the SOW;
- Evaluation of the need for additional response actions to address non-PCB constituents and (if needed) the type of such response actions;
- Evaluation of other issues that may affect the type and extent of response actions;
- Preliminary plans and specifications to support the response actions;
- Summary of preliminary response action quantities, including soil removal, capping areas, etc.;
- Design assumptions and parameters; and
- Identification of Applicable or Relevant and Appropriate Requirements (ARARs) in accordance with Attachment B to the SOW.

Tables

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample/Location ID	Depth(Feet)	Date Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
GE-11	10-15	10/9/2002	ND(0.91)	ND(0.91)	ND(0.91)	ND(0.91)	ND(0.91)	5,8	ND(0.91)	5.8
NS-29	4-6	10/24/2002	ND(0.053)	ND(0.053)	ND(0.053)	ND(0.053)	ND(0.053)	0.24	ND(0.053)	0.24
	6-10	10/24/2002	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0,048)	ND(0.048)	ND(0.048)	ND(0.048)
	10-15	10/24/2002	ND(0.045)	ND(0.045)	ND(0.045)	ND(0.045)	ND(0.045)	ND(0.045)	ND(0.045)	ND(0.045)
RAA13-1	0-1	10/24/2002	ND(4.9)	ND(4.9)	ND(4.9)	ND(4.9)	ND(4.9)	130	ND(4.9)	130
	1-3	10/24/2002	ND(4.5)	ND(4.5)	ND(4.5)	ND(4.5)	ND(4.5)	210	ND(4.5)	210
	3-6	10/24/2002	ND(5.1)	ND(5.1)	ND(5.1)	ND(5.1)	ND(5.1)	180	ND(5.1)	180
	10-15	10/24/2002	ND(0.88)	ND(0.88)	ND(0.88)	ND(0.88)	ND(0.88)	1.8	ND(0.88)	1.8
	21-23	10/24/2002	ND(0.047)	ND(0.047)	ND(0.047)	ND(0.047)	ND(0.047)	0.19	ND(0.047)	0.19
RAA13-A1	0-1	9/26/2002	ND(0.17)	ND(0,17)	ND(0.17)	ND(0.17)	ND(0.17)	2.5	0.69	3.19
RAA13-A83	0-1	10/22/2002	ND(0.24)	ND(0.24)	ND(0.24)	ND(0.24)	ND(0.24)	10	ND(0.24)	10
RAA13-A84	0-1	10/22/2002	ND(0.96)	ND(0.96)	ND(0.96)	ND(0.96)	ND(0.96)	12	4.3	16.3
RAA13-A85	0-1	10/15/2002	ND(4.6)	ND(4.6)	ND(4.6)	ND(4.6)	ND(4.6)	13	ND(4.6)	13
RAA13-A86	0-1	10/22/2002	ND(2.6)	ND(2.6)	ND(2.6)	ND(2.6)	ND(2.6)	98	ND(2.6)	98
RAA13-A87	0-1	10/15/2002	ND(48)	ND(48)	ND(48)	ND(48)	ND(48)	670	ND(48)	670
RAA13-A89	0-1	10/4/2002	ND(0.98)	ND(0.98)	ND(0.98)	ND(0.98)	ND(0.98)	34	10	44
RAA13-A90	0-1	10/4/2002	ND(0.44)	ND(0.44)	ND(0.44)	ND(0,44)	ND(0.44)	2.2	0.94	3.14
RAA13-A91	0-1	10/4/2002	ND(240)	ND(240)	ND(240)	ND(240)	ND(240)	2700	ND(240)	2700
RAA13-A93	0-1	9/30/2002	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	1.2	0.48	1.68
RAA13-A94	0-1	9/30/2002	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.21)	0.80	ND(0.21)	0.80
RAA13-A96	0-1	9/26/2002	ND(1.7)	ND(1.7)	ND(1.7)	ND(1.7)	ND(1.7)	26	ND(1.7)	26
RAA13-A97	0-1	10/9/2002	ND(230)	ND(230)	ND(230)	ND(230)	ND(230)	2100	ND(230)	2100
RAA13-A98	0-1	10/9/2002	ND(0.89)	ND(0.89)	ND(0.89)	ND(0.89)	ND(0.89)	3.3	1.9	5.2
RAA13-A99	0-1	9/26/2002	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	2.2	0.72	2.92
RAA13-B1	0-1	9/26/2002	ND(1.7)	ND(1.7)	ND(1.7)	ND(1.7)	ND(1.7)	7.3	4.4	11.7
RAA13-B2	0-1	9/26/2002	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	37	19	56
	1-3	9/26/2002	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	16	12	28
	3-6	9/26/2002	ND(2.8)	ND(2.8)	ND(2.8)	ND(2.8)	ND(2.8)	88	20	108
	6-10	9/26/2002	ND(12) [ND(12)]	ND(12) [ND(12)]	ND(12) [ND(12)]	ND(12) [ND(12)]	ND(12) [ND(12)]	110 [48]	ND(12) [ND(12)]	110 [48]
	10-15	9/26/2002	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	1.1	0.20	1.3
RAA13-B3	0-1	9/26/2002	ND(3.7)	ND(3.7)	ND(3.7)	ND(3.7)	ND(3.7)	100	41	141
RAA13-B83	6-10	10/22/2002	ND(0,050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0,050)	ND(0.050)
	10-15	10/22/2002	ND(0.053) [ND(0.055)]	ND(0.053) [ND(0.055)]			ND(0.053) [ND(0.055)]		ND(0.053) [ND(0.055)]	
RAA13-B84	0-1	10/25/2002	ND(4.9)	ND(4.9)	ND(4.9)	ND(4.9)	ND(4.9)	15	ND(4.9)	15
RAA13-B86	0-1	10/24/2002	ND(7.6)	ND(7.6)	ND(7.6)	ND(7.6)	ND(7.6)	85	ND(7.6)	85
RAA13-B87	0-1	10/24/2002	ND(29)	ND(29)	ND(29)	ND(29)	ND(29)	1200	ND(29)	1200
	1-3	10/24/2002	ND(300)	ND(300)	ND(300)	ND(300)	ND(300)	2600	ND(300)	2600
	3-6	10/24/2002	ND(120)	ND(120)	ND(120)	ND(120)	ND(120)	1200	ND(120)	1200
	6-10	10/24/2002	ND(23)	ND(23)	ND(23)	ND(23)	ND(23)	160	ND(23)	160
	10-15	10/24/2002	ND(4.3) [ND(4.6)]	ND(4.3) [ND(4.6)]	ND(4.3) [ND(4.6)]	ND(4.3) [ND(4.6)]	ND(4.3) [ND(4.6)]	150 [160]	ND(4.3) [ND(4.6)]	150 [160]
RAA13-B88	0-1	10/15/2002	ND(9.0)	ND(9.0)	ND(9.0)	ND(9.0)	ND(9.0)	92	26	118
RAA13-B90	0-1	10/1/2002	ND(28)	ND(28)	ND(28)	ND(28)	ND(28)	190	ND(28)	190
RAA13-B92	0-1	10/4/2002	ND(0.92)	ND(0.92)	ND(0.92)	ND(0.92)	ND(0.92)	13	4.7	17.7
RAA13-B95	0-1	9/26/2002	ND(0.034)	ND(0.034)	ND(0.034)	ND(0.034)	ND(0.034)	0.55	ND(0.034)	0.55
	1-3	9/26/2002	ND(89)	ND(89)	ND(89)	ND(89)	ND(89)	510	ND(89)	510
	3-6	9/26/2002	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)	890	ND(100)	890
	6-10	9/26/2002	ND(18)	ND(18)	ND(18)	ND(18)	ND(18)	720	ND(18)	720
	10-15	9/26/2002	ND(1.8)	ND(1.8)	ND(1.8)	ND(1.8)	ND(1.8)	17	ND(1.8)	17
RAA13-B96	0-1	9/26/2002	ND(1.7)	ND(1.7)	ND(1.7)	ND(1.7)	ND(1.7)	10	ND(1.7)	10
RAA13-B97	10-15	10/9/2002	ND(0.046)	ND(0.046)	ND(0.046)	ND(0.046)	ND(0.046)	0.068	ND(0.046)	0.068
RAA13-B98	0-1	10/9/2002	ND(23)	ND(23)	ND(23)	ND(23)	ND(23)	77	ND(23)	77

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID	Depth(Feet)	Date Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
RAA13-B99	10-15	10/9/2002	ND(0.42)	ND(0.42)	ND(0.42)	ND(0.42)	ND(0.42)	2.3	0.86	3,16
RAA13-C3	0-1	9/26/2002	ND(0.71)	ND(0.71)	ND(0.71)	ND(0.71)	ND(0.71)	11	4.3	15,3
RAA13-C4	0-1	9/26/2002	ND(1.8)	ND(1.8)	ND(1.8)	ND(1.8)	ND(1.8)	57	25	82
RAA13-C5	0-1	9/26/2002	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	70	30	100
RAA13-C85	0-1	10/25/2002	ND(0.49)	ND(0.49)	ND(0.49)	ND(0.49)	ND(0.49)	6.7	ND(0.49)	6.7
RAA13-C86	0-1	10/15/2002	ND(16)	ND(16)	ND(16)	ND(16)	ND(16)	110	ND(16)	110
RAA13-C88	0-1	10/15/2002	ND(9.4)	ND(9.4)	ND(9.4)	ND(9.4)	ND(9.4)	120	ND(9.4)	120
RAA13-C89	0-1	10/1/2002	ND(25)	ND(25)	ND(25)	ND(25)	ND(25)	220	ND(25)	220
RAA13-C91	0-1	10/1/2002	ND(0.44)	ND(0.44)	ND(0.44)	ND(0.44)	ND(0.44)	8.3	2.1	10.4
RAA13-C92	0-1	10/1/2002	ND(120)	ND(120)	ND(120)	ND(120)	ND(120)	970	ND(120)	970
RAA13-C93	0-1	9/30/2002	ND(0.88)	ND(0.88)	ND(0.88)	ND(0.88)	ND(0.88)	14	3.7	17.7
RAA13-C94	0-1	9/30/2002	ND(0.42)	ND(0.42)	ND(0.42)	ND(0.42)	ND(0.42)	2.3	2.9	5.2
RAA13-C95	0-1	9/30/2002	ND(0.86)	ND(0.86)	ND(0.86)	ND(0.86)	ND(0.86)	ND(0.86)	1.8	1.8
RAA13-C96	0-1	9/26/2002	ND(1.7)	ND(1.7)	ND(1.7)	ND(1.7)	ND(1.7)	9.4	ND(1.7)	9.4
RAA13-C97	0-1	10/9/2002	ND(0.93)	ND(0.93)	ND(0.93)	ND(0.93)	ND(0.93)	4.0	1.1	5.1
RAA13-C98	0-1	10/9/2002	ND(0.89) [ND(0.88)]	5.8 [9.0]	1.6 J [2.9 J]	7.4 [11.9]				
RAA13-C99	0-1	10/9/2002	ND(0.90)	ND(0.90)	ND(0.90)	ND(0.90)	ND(0.90)	3.7	1.3	5.0
RAA13-D85	6-10	10/25/2002	ND(0.044)	ND(0,044)	ND(0.044)	ND(0,044)	ND(0.044)	0.049	ND(0.044)	0.049
	10-15	10/25/2002	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
RAA13-D87	10-15	10/24/2002	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)
RAA13-D88	0-1	10/15/2002	ND(110)	ND(110)	ND(110)	ND(110)	ND(110)	1400	ND(110)	1400
RAA13-D90	0-1	10/1/2002	ND(2.3)	ND(2.3)	ND(2.3)	ND(2.3)	ND(2.3)	14	5.5	19.5
RAA13-D91	0-1	10/1/2002	ND(1200)	ND(1200)	ND(1200)	ND(1200)	ND(1200)	8200	ND(1200)	8200
	1-3	10/1/2002	ND(1200)	ND(1200)	ND(1200)	ND(1200)	ND(1200)	12000	ND(1200)	12000
	3-6	10/1/2002	ND(1400)	ND(1400)	ND(1400)	ND(1400)	ND(1400)	12000	ND(1400)	12000
	6-10	10/1/2002	ND(230)	ND(230)	ND(230)	ND(230)	ND(230)	7200	ND(230)	7200
	10-15	10/1/2002	ND(280)	ND(280)	ND(280)	ND(280)	ND(280)	6100	ND(280)	6100
RAA13-D92	0-1	10/1/2002	ND(240)	ND(240)	ND(240)	ND(240)	ND(240)	7000	ND(240)	7000
RAA13-D97	10-15	10/9/2002	ND(0.49)	ND(0.49)	ND(0.49)	ND(0.49)	ND(0.49)	0.92	ND(0.49)	0.92
RAA13-D98	0-1	10/9/2002	ND(0.46)	ND(0.46)	ND(0.46)	ND(0.46)	ND(0.46)	1.2	0.46 J	1.66
RAA13-D99	0-1	10/9/2002	ND(0.22)	ND(0.22)	ND(0.22)	ND(0.22)	ND(0,22)	0.75	0.98	1.73
	1-3	10/9/2002	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.21)	1.1	0.81	1.91
	3-6	10/9/2002	ND(0.43)	ND(0.43)	ND(0.43)	ND(0.43)	ND(0.43)	1.8	0.63	2.43
	6-10	10/9/2002	ND(0.042)	ND(0.042)	ND(0.042)	ND(0.042)	ND(0.042)	0.090	ND(0.042)	0.090
	10-15	10/9/2002	ND(0.042)	ND(0.042)	ND(0.043)	ND(0.042)	ND(0.042)	ND(0.043)	ND(0.043)	ND(0.043)
RAA13-E86	0-1	10/15/2002	ND(0.48)	ND(0.48)	ND(0.48)	ND(0.48)	ND(0.48)	2.6	1.2	3.8
RAA13-E87	0-1	10/15/2002	ND(0.47)	ND(0.47)	ND(0.47)	ND(0.47)	ND(0.48)	2.5	1.1	3.6
RAA13-E88	0-1	10/15/2002	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	9.6	2.9	12.5
RAA13-E89	0-1	10/15/2002	ND(0.92)	ND(0.92)	ND(0.92)	ND(0.92)	ND(0.92)	5.0	1.7	6.7
RAA13-E91	0-1	10/1/2002	ND(23)	ND(23)	ND(23)	ND(23)	ND(0.92) ND(23)	100	ND(23)	100
RAA13-E92	0-1	10/1/2002	ND(12)	ND(12)	ND(12)	ND(12)	ND(12)	75	40	115
RAA13-E94	0-1	9/30/2002	ND(22)	ND(22)	ND(22)	ND(12)	ND(22)	ND(22)	660	660
RAA13-F87	0-1	10/25/2002	ND(2.3)	ND(2.3)	ND(2.3)	ND(2.3)	ND(2.3)	4.7	ND(2.3)	4.7
	1-3	10/25/2002	ND(0.042)	ND(0.042)	ND(0.042)	ND(0,042)	ND(0.042)	0.26	ND(0.042)	0.26
	3-6	10/25/2002	ND(0.041)	ND(0.041)	ND(0.042)	ND(0.041)	ND(0.042) ND(0.041)	ND(0.041)	ND(0.041)	ND(0.041)
	6-10	10/25/2002	ND(0.046)	ND(0.046)	ND(0.041)	ND(0.046)	ND(0.041) ND(0.046)	ND(0.041) ND(0.046)	ND(0.041)	ND(0.047) ND(0.046)
	10-15	10/25/2002	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)
RAA13-F88	0-1	10/15/2002	ND(0.55)	ND(0.55)	ND(0.55)	ND(0.55)	ND(0.55)	3.9	2.4	ND(0.048) 6.3

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample/Location ID	Depth(Feet)	Date Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
RAA13-F89	0-1	10/23/2002	ND(0.25)	ND(0.25)	ND(0.25)	ND(0.25)	ND(0.25)	3.1	ND(0.25)	3.1
	1-3	10/23/2002	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	0.042 J	ND(0.044)	0.042 J
	3-6	10/23/2002	ND(0.055)	ND(0.055)	ND(0.055)	ND(0.055)	ND(0.055)	0.041 J	ND(0.055)	0.041 J
	6-10	10/23/2002	ND(0.057)	ND(0.057)	ND(0.057)	ND(0.057)	ND(0.057)	0.050 J	ND(0.057)	0.050 J
	10-15	10/23/2002	ND(0.057)	ND(0.057)	ND(0.057)	ND(0.057)	ND(0.057)	ND(0.057)	ND(0.057)	ND(0.057)
RAA13-F90	0-1	10/15/2002	ND(0.48)	ND(0.48)	ND(0.48)	ND(0.48)	ND(0.48)	7.6	2.4	10
RAA13-F91	0-1	9/30/2002	ND(2.5)	ND(2.5)	ND(2.5)	ND(2.5)	ND(2.5)	11	ND(2.5)	11
	1-3	9/30/2002	ND(0.93)	ND(0.93)	ND(0.93)	ND(0.93)	ND(0.93)	12	ND(0.93)	12
	3-6	9/30/2002	ND(560)	ND(560)	ND(560)	ND(560)	ND(560)	4400	ND(560)	4400
	6-10	9/30/2002	ND(110)	ND(110)	ND(110)	ND(110)	ND(110)	790	ND(110)	790
	10-15	9/30/2002	ND(2.5)	ND(2.5)	ND(2.5)	ND(2.5)	ND(2.5)	44	8.6	52.6
RAA13-F92	0-1	10/1/2002	ND(120)	ND(120)	ND(120)	ND(120)	ND(120)	690	560	1250
RAA13-F93	0-1	9/30/2002	ND(120)	ND(120)	ND(120)	ND(120)	ND(120)	ND(120)	1100	1100
	1-3	9/30/2002	ND(230)	ND(230)	ND(230)	ND(230)	ND(230)	ND(230)	4100	4100
	3-6	9/30/2002	ND(120)	ND(120)	ND(120)	ND(120)	ND(120)	1400	1500	2900
	6-10	9/30/2002	ND(130)	ND(130)	ND(130)	ND(130)	ND(130)	3400	ND(130)	3400
	10-15	9/30/2002	ND(590)	ND(590)	ND(590)	ND(590)	ND(590)	3800	1100	4900
RAA13-F94	0-1	9/30/2002	ND(110)	ND(110)	ND(110)	ND(110)	ND(110)	ND(110)	220	220
RAA13-F95	0-1	9/30/2002	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	0.13	ND(0.043)	0.13
	1-3	9/30/2002	ND(4.3)	ND(4.3)	ND(4.3)	ND(4.3)	ND(4.3)	54	17	71
	3-6	9/30/2002	ND(0.042)	ND(0.042)	ND(0.042)	ND(0.042)	ND(0.042)	0.16	ND(0.042)	0.16
	6-10	9/30/2002	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	0.033 J	ND(0.050)	0.033 J
	10-15	9/30/2002		ND(0.054) [ND(0.051)]		ND(0.054) [ND(0.051)]		0.12 [0.044 J]	ND(0.054) [ND(0.051)]	0.12 [0.044 J]
RAA13-F96	0-1	9/26/2002	ND(18)	ND(18)	ND(18)	ND(18)	ND(18)	22	ND(18)	22
RAA13-F99	10-15	10/16/2002	ND(0.041)	ND(0.041)	ND(0.041)	ND(0.041)	ND(0.041)	0.023 J	ND(0.041)	0.023 J
RAA13-G88	0-1	10/15/2002	ND(0.047)	ND(0.047)	ND(0.047)	ND(0.047)	ND(0.041)	1.6	0.88	2.48
RAA13-G89	0-1	10/15/2002	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	1.6	1.2	2.8
RAA13-G90	0-1	10/15/2002	ND(0.048)	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	0.087	0.043 J	0,13
RAA13-G91	0-1	10/1/2002	ND(0.25)	ND(0.25)	ND(0.25)	ND(0.25)	ND(0.25)	2.4	0.76	3.16
RAA13-G92	0-1	10/1/2002	ND(130) [ND(260)]	1600 [1800]	1200 [940]	2800 [2740]				
RAA13-G93	0-1	10/1/2002	ND(2,4)	ND(2.4)	ND(2.4)	ND(2.4)	ND(130) [ND(200)]	1600 [1600]	ND(2.4)	16
RAA13-H88	0-1	10/15/2002	ND(0.045)	ND(0.045)	ND(0.045)	ND(0.045)	ND(0.045)	1.1	0.86	1.96
RAA13-H89	0-1	10/23/2002	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	0.40	0.33	0.73
	1-3	10/23/2002	ND(0.042)	ND(0.042)	ND(0.042)	ND(0.048)	ND(0.048) ND(0.042)	0.061	ND(0.042)	0.061
	3-6	10/23/2002	ND(0.041)	ND(0.041)	ND(0.042) ND(0.041)	ND(0.042) ND(0.041)	ND(0.042) ND(0.041)	0.081	0.071	0.152
	6-10	10/23/2002	ND(0.043) [ND(0.042)]	ND(0.043) [ND(0.042)]	ND(0.043) [ND(0.042)]		ND(0.041) ND(0.043) [ND(0.042)]			0.144 [0.179]
	10-15	10/23/2002	ND(0.046)	ND(0.045) [ND(0.042)]	ND(0.043) [ND(0.042)]	ND(0.043) [ND(0.042)]	ND(0.043) [ND(0.042)] ND(0.046)	0.083 [0.10] ND(0.046)	0.061 [0.079] ND(0.046)	0,144 (0,179) ND(0,046)
RAA13-H90	0-1	10/15/2002	ND(0.046)	ND(0.046)	ND(0.046)	ND(0.046)	ND(0.046)	0.30	0.16	0.46
RAA13-H91	3-6	10/23/2002	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	
100(101101	6-10	10/23/2002	ND(0.050)	ND(0.043) ND(0.050)	ND(0.043) ND(0.050)					ND(0.043)
	10-15	10/23/2002	ND(0.050) ND(0.051)	ND(0.050) ND(0.051)		ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
RAA13-H92	0-1	10/1/2002	ND(0.96)	ND(0.051) ND(0.96)	ND(0.051)	ND(0.051)	ND(0.051)	ND(0.051)	ND(0.051)	ND(0.051)
RAA13-H93	0-1	9/30/2002	ND(0.94)		ND(0.96)	ND(0.96)	ND(0.96)	1.5	ND(0.96)	1.5
10 9 11 90 1 190 97	1-3	9/30/2002	ND(0.94) ND(0.23)	ND(0.94)	ND(0.94)	ND(0.94)	ND(0.94)	2.4	4.8	7.2
	3-6	9/30/2002	ND(0.23) ND(0.047)	ND(0.23) ND(0.047)	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.23)	1.5	1.5
	6-10	9/30/2002	ND(0.047) ND(0.047)		ND(0.047)	ND(0.047)	ND(0.047)	0.24	0.10	0.34
	10-15	9/30/2002		ND(0.047)	ND(0.047)	ND(0.047)	ND(0.047)	0.14	ND(0.047)	0.14
RAA13-I92	0-15	CONTROL OF THE PROPERTY OF THE PARTY OF THE	ND(0.051)	ND(0.051)	ND(0.051)	ND(0.051)	ND(0.051)	0.055	ND(0.051)	0.055
RAA13-192	0-1	10/15/2002	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	0.34	0.14	0.48
RAA13-193	0-1	10/1/2002	ND(0.97) [ND(0.49)]	1.5 [1.2]	0.95 J [0.74]	2.45 [1.94]				
VVV110-104	U-1	10/1/2002	ND(0.045)	ND(0.045)	ND(0.045)	ND(0.045)	ND(0.045)	0.52	0.42	0.94

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample/Location ID	Depth(Feet)	Date Collected	Aroclor-1016	Arocior-1221	Aroclor-1232	Arocior-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
RAA13-Y88	0-1	10/4/2002	ND(2.3)	ND(2.3)	ND(2.3)	ND(2.3)	ND(2.3)	39	ND(2.3)	39
RAA13-Z83	1-3	10/4/2002	ND(2.2)	ND(2.2)	ND(2.2)	ND(2.2)	ND(2.2)	ND(2.2)	14	14
	3-6	10/4/2002	ND(0.22)	ND(0.22)	ND(0.22)	ND(0.22)	ND(0.22)	ND(0.22)	0.57	0.57
	6-10	10/4/2002	ND(0.052)	ND(0.052)	ND(0.052)	ND(0.052)	ND(0.052)	ND(0.052)	ND(0.052)	ND(0.052)
	10-15	10/4/2002	ND(0.051) [ND(0.050)]	0.036 J [0.067]	ND(0.051) [ND(0.050)]	0.036 J [0.067]				
RAA13-Z85	1-3	10/4/2002	ND(0.047)	ND(0.047)	ND(0.047)	ND(0.047)	ND(0.047)	0.35	0.31	0.66
	3-6	10/4/2002	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	0.031 J	0.031 J
	6-10	10/4/2002	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	0.050	ND(0.043)	0,050
	10-15	10/4/2002	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)
RAA13-Z86	0-1	10/4/2002	ND(2.5)	ND(2.5)	ND(2.5)	ND(2.5)	ND(2.5)	17	ND(2.5)	17
RAA13-Z87	10-15	10/4/2002	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)	0.10	ND(0.044)	0.10
RAA13-Z90	0-1	10/16/2002	ND(110)	ND(110)	ND(110)	ND(110)	ND(110)	650	ND(110)	650
RAA13-Z92	0-1	9/30/2002	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	ND(0.043)	1.1	ND(0.043)	1,1
RAA13-Z99	1-3	9/26/2002	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)
	3-6	9/26/2002	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)
	6-10	9/26/2002	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)
	10-15	9/26/2002	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and were submitted to CT&E Environmental Services, Inc. for analysis of PCBs,
- 2. Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan, General Electric Company, Pittsfield, Massachusetts, Blasland Bouck & Lee, Inc. (approved November 4, 2002 and resubmitted December 10, 2002).
- 3. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 4. Duplicate sample results are presented in brackets.

Data Qualifiers:

J - Indicates that the associated numerical value is an estimated concentration.

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:	RAA13-1	RAA13-1	RAA13-1	RAA13-A83
Sample Depth(Feet):	3-6	4-6	21-23	0-1
Parameter Date Collected:	10/24/02	10/24/02	10/24/02	10/22/02
Volatile Organics				
1,2-Dibromo-3-chloropropane	NS	0.012	ND(0.0071)	ND(0.0071)
Acetone	NS	ND(0.031)	ND(0.028)	ND(0.028)
Benzene	NS	ND(0.0077)	ND(0.0071)	ND(0.0071)
Chlorobenzene	NS	ND(0.0077)	ND(0.0071)	ND(0.0071)
Tetrachloroethene	NS	ND(0.0077)	0.0058 J	ND(0.0071)
Toluene	NS	ND(0.0077)	ND(0.0071)	ND(0.0071)
Trichloroethene	NS	ND(0.0077)	ND(0.0071)	ND(0.0071)
Semivolatile Organics				
1,2,4-Trichlorobenzene	ND(1.0)	NS	ND(0.80)	ND(0.47)
1,2-Dichlorobenzene	ND(1.0)	NS	ND(0.80)	ND(0.47)
1,3-Dichlorobenzene	ND(1.0)	NS	ND(0.80)	ND(0.47)
1,4-Dichlorobenzene	ND(1.0)	NS	ND(0.80)	ND(0.47)
2,4-Dimethylphenol	ND(1.0)	NS	ND(0.80)	ND(0.47)
2,4-Dinitrotoluene	ND(1.0)	NS	ND(0.80)	ND(0.47)
2-Chloronaphthalene	ND(1.0)	NS	ND(0.80)	ND(0.47)
2-Chlorophenol	ND(1.0)	NS	ND(0.80)	ND(0.47)
2-Methylnaphthalene	ND(1.0)	NS	ND(0.80)	ND(0.47)
2-Methylphenol	ND(1.0)	NS	ND(0.80)	ND(0.47)
3&4-Methylphenol	ND(1.0)	NS	ND(0.95)	ND(0.95)
3,3'-Dichlorobenzidine	ND(2.0)	NS	ND(1.6)	ND(0.95)
4-Chloro-3-Methylphenol	ND(1.0)	NS	ND(0.80)	ND(0.47)
4-Chloroaniline	ND(1.0)	NS	ND(0.80)	ND(0.47)
4-Nitrophenol	ND(5.1)	NS	ND(4.0)	ND(2.4)
Acenaphthene	ND(1.0)	NS	ND(0.80)	ND(0.47)
Acenaphthylene	0.72 J	NS	ND(0.80)	ND(0.47)
Aniline	ND(1.0)	NS	ND(0.80)	0.11 J
Anthracene	0.38 J	NS	ND(0.80)	ND(0.47)
Benzo(a)anthracene	0.74 J	NS	ND(0.80)	0.26 J
Benzo(a)pyrene	0.87 J	NS	ND(0.80)	0.22 J
Benzo(b)fluoranthene	1.0 J	NS	ND(0.80)	0.34 J
Benzo(g,h,i)perylene	0.66 J	NS	ND(0.80)	0.16 J
Benzo(k)fluoranthene	0.41 J	NS	ND(0.80)	0.17 J
bis(2-Ethylhexyl)phthalate	ND(0.51)	NS	ND(0.47)	ND(0.47)
Chrysene	0.71 J	NS	ND(0.80)	0.27 J
Dibenzo(a,h)anthracene	ND(1.0)	NS	ND(0.80)	ND(0.47)
Dibenzofuran	ND(1.0)	NS	ND(0.80)	ND(0.47)
Di-n-Butylphthalate	2.0	NS	ND(0.80)	ND(0.47)
Fluoranthene	1.2	NS	ND(0.80)	0.74
Fluorene	ND(1.0)	NS	ND(0.80)	ND(0.47)
Indeno(1,2,3-cd)pyrene	0.50 J	NS	ND(0.80)	0.11 J
Naphthalene	ND(1.0)	NS	ND(0.80)	ND(0.47)
N-Nitroso-di-n-propylamine	ND(1.0)	NS	ND(0.80)	ND(0.47)
Pentachlorophenol	ND(5.1)	NS	ND(4.0)	ND(2.4)
Phenanthrene	0.73 J	NS	ND(0.80)	0.42 J
Phenol	ND(1.0)	NS	ND(0.80)	ND(0.47)
Pronamide	ND(1.0)	NS	ND(0.80)	ND(0.47)
Pyrene	1.5	NS	ND(0.80)	0.71

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:	RAA13-1	RAA13-1	RAA13-1	RAA13-A83
Sample Depth(Feet):	3-6	4-6	21-23	0-1
Parameter Date Collected:	10/24/02	10/24/02	10/24/02	10/22/02
Furans				
2,3,7,8-TCDF	0.00025 Y	NS	ND(0.0000017)	0.000030 YQI
TCDFs (total)	0.0042 I	NS	ND(0.0000017)	0.00027
1,2,3,7,8-PeCDF	0.000095	NS	ND(0.0000028)	0.000018
2,3,4,7,8-PeCDF	0.00045	NS	ND(0.0000028)	0.000030
PeCDFs (total)	0.0068 I	NS	ND(0.0000028)	0.000331
1,2,3,4,7,8-HxCDF	0.00045	NS	ND(0.0000028)	0.000076
1,2,3,6,7,8-HxCDF	0.000271	NS	ND(0.0000028)	0.000038
1,2,3,7,8,9-HxCDF	0.000062	NS	ND(0.0000030)	0.000011
2,3,4,6,7,8-HxCDF	0.00058	NS	ND(0.0000028)	0.000030
HxCDFs (total)	0.011 I	NS	ND(0.0000028)	0.00049
1,2,3,4,6,7,8-HpCDF	0.0010	NS	ND(0.0000028)	0.00013
1,2,3,4,7,8,9-HpCDF	0.00011	NS	ND(0.0000028)	0.000041
HpCDFs (total)	0.0031	NS	ND(0.0000028)	0.00027
OCDF	0.00052	NS	ND(0.0000057)	0.00019
Dioxins			- 	
2,3,7,8-TCDD	0.0000019 J	NS	ND(0.0000013)	ND(0.00000075) X
TCDDs (total)	0.000039	NS	ND(0.0000029)	0.000097
1,2,3,7,8-PeCDD	ND(0.0000075) X	NS	ND(0.0000028)	ND(0.0000014) X
PeCDDs (total)	0.000041	NS	ND(0.0000042)	0.000016
1,2,3,4,7,8-HxCDD	0.0000056	NS	ND(0.0000033)	0.0000010 J
1,2,3,6,7,8-HxCDD	0.000018	NS	ND(0.0000028)	0.0000018 J
1,2,3,7,8,9-HxCDD	0.0000092	NS	ND(0.0000028)	0.0000014 J
HxCDDs (total)	0.00016	NS	ND(0.0000052)	0.000026
1,2,3,4,6,7,8-HpCDD	0.00021	NS	ND(0.0000033)	0.000014
HpCDDs (total)	0.00038	NS	ND(0.0000033)	0.000026
OCDD	0.0024	NS	ND(0.0000070)	0.000066
Total TEQs (WHO TEFs)	0.00041	NS	0.0000040	0.000038
Inorganics			1 0.00000.0	1 0.00000
Antimony	ND(6.00)	NS	ND(6.00)	ND(6.00)
Arsenic	13.0	NS	4.60	4.50 J
Barium	250	NS	23.0	48.0
Beryllium	ND(0.500)	NS	ND(0.500)	ND(0.500)
Cadmium	4.80	NS	0.670	ND(0.500) J
Chromium	53.0	NS	6.90	12.0
Cobalt	13.0	NS	7.60	9.40
Copper	180	NS	13.0	33.0 J
Cyanide	0.740	NS	ND(0.710)	ND(0.140)
Lead	620	NS	6.60	34.0
Mercury	0.470	NS	ND(0.140)	0.230
Nickel	27.0	NS	14.0	17.0
Selenium	ND(1.20) J	NS	ND(1.10) J	ND(1.00) J
Silver	ND(1.20)	NS	ND(1.10)	ND(1.00)
Sulfide	120	NS	57.0	29.0
Thallium	ND(2.30) J	NS	ND(2.10) J	ND(2.10) J
Tin	300	NS	5.10 B	5.80 B
Vanadium	8.40	NS	6.40	12.0
Zinc	790 J	NS	67.0 J	76.0 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID: Sample Depth(Feet):	RAA13-A83 1-3	RAA13-A83 10-15	RAA13-A83 12-15	RAA13-A84 0-1
Parameter Date Collected:	10/22/02	10/22/02	10/22/02	10/22/02
Volatile Organics				
1,2-Dibromo-3-chloropropane	ND(0.0067)	NS	ND(0.0080)	ND(0.0072)
Acetone	ND(0.027)	NS NS	ND(0.032)	ND(0.029)
Benzene	ND(0.0067)	NS NS	ND(0.0080)	ND(0.0072)
Chlorobenzene	ND(0.0067)	NS	ND(0.0080)	ND(0.0072)
Tetrachloroethene	ND(0.0067)	NS	ND(0.0080)	ND(0.0072)
Toluene	ND(0.0067)	NS	ND(0.0080)	ND(0.0072)
Trichloroethene	ND(0.0067)	NS NS	ND(0.0080)	ND(0.0072)
Semivolatile Organics	(0.000.)		1.0(0.0000)	710(0.0072)
1.2.4-Trichlorobenzene	ND(0.45)	ND(0.54)	l NS	ND(0.48)
1,2-Dichlorobenzene	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
1,3-Dichlorobenzene	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
1,4-Dichlorobenzene	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
2,4-Dimethylphenol	ND(0.45) ND(0.45)	ND(0.54)	NS NS	ND(0.48)
2,4-Dinitrotoluene	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
2-Chloronaphthalene	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
2-Chlorophenol	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
2-Methylnaphthalene	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
2-Methylphenol	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
3&4-Methylphenol	ND(0.43)	ND(0.34)	NS NS	ND(0.48)
3,3'-Dichlorobenzidine	ND(0.90)	ND(1.1)	NS NS	ND(0.96)
4-Chloro-3-Methylphenol	ND(0.45)	ND(1.1)	NS NS	ND(0.48)
4-Chloroaniline	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
4-Nitrophenol	ND(0.43)	ND(0.34)	NS NS	ND(2.4)
Acenaphthene	ND(0.45)	ND(2.7)	NS NS	ND(0.48)
Acenaphthele	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
Aniline	ND(0.45)	ND(0.54)	NS NS	0.13 J
Anthracene	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
Benzo(a)anthracene	ND(0.45)	ND(0.54)	NS NS	0.10 J
Benzo(a)pyrene	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
Benzo(b)fluoranthene	ND(0.45)	ND(0.54)	NS NS	0.11 J
Benzo(g,h,i)perylene	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
Benzo(k)fluoranthene	ND(0.45)	ND(0.54) ND(0.54)	NS NS	ND(0.48)
bis(2-Ethylhexyl)phthalate	ND(0.44)	ND(0.54)	NS NS	ND(0.48)
Chrysene Chrysene	ND(0.44)	ND(0.54)	NS NS	0.11 J
Dibenzo(a,h)anthracene	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
Dibenzofuran Dibenzofuran	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
Di-n-Butylphthalate	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
Fluoranthene	0.15 J	ND(0.54)	NS NS	ND(0.48)
Fluorene	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
Indeno(1,2,3-cd)pyrene	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
Naphthalene	ND(0.45)	ND(0.54) ND(0.54)	NS NS	
N-Nitroso-di-n-propylamine	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
Pentachlorophenol	ND(0.43)	ND(2.7)	NS NS	ND(0.48)
Phenanthrene	0.12 J		NS NS	ND(2.4)
Phenol	ND(0.45)	ND(0.54)		0.12 J
Pronamide	ND(0.45)	ND(0.54)	NS NS	ND(0.48)
Pyrene	0.18 J	ND(0.54) ND(0.54)	NS NS	ND(0.48) 0.22 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID: Sample Depth(Feet):	RAA13-A83 1-3	RAA13-A83 10-15	RAA13-A83 12-15	RAA13-A84 0-1
Parameter Date Collected:	10/22/02	10/22/02	10/22/02	10/22/02
Furans				
2,3,7,8-TCDF	0.000036 YI	ND(0.00000031)	NS	0.000071 Y
TCDFs (total)	0.00030	ND(0.00000031)	NS	0.000641
1,2,3,7,8-PeCDF	0.000015	ND(0.00000061)	NS	0.000045
2,3,4,7,8-PeCDF	0.000023	ND(0.00000061)	NS	0.000074
PeCDFs (total)	0.00030	ND(0.00000061)	NS	0.000741
1,2,3,4,7,8-HxCDF	0.000032	ND(0.00000061)	NS	0.00015
1,2,3,6,7,8-HxCDF	0.000020	ND(0.00000061)	NS	0.000079
1,2,3,7,8,9-HxCDF	0.0000046 J	ND(0.00000061)	NS	0.000019
2,3,4,6,7,8-HxCDF	0.000021	ND(0.00000061)	NS	0.000049
HxCDFs (total)	0.00037	ND(0.00000061)	NS	0.00084
1,2,3,4,6,7,8-HpCDF	0.000066	ND(0.00000061)	NS	0.00018
1,2,3,4,7,8,9-HpCDF	0.0000085	ND(0.00000061)	NS	0.000034
HpCDFs (total)	0.00014	ND(0.00000061)	NS	0.00034
OCDF	0.000069	ND(0.0000012)	NS	0.00018
Dioxins				1
2,3,7,8-TCDD	ND(0.00000092) X	ND(0.00000047)	NS	ND(0.0000010) X
TCDDs (total)	0.0000044	ND(0.00000091)	NS	0.000011
1,2,3,7,8-PeCDD	ND(0.0000015) X	ND(0.00000061)	NS	ND(0.0000025) X
PeCDDs (total)	0.000011	ND(0.0000012)	NS	0.000014
1,2,3,4,7,8-HxCDD	ND(0.0000011) X	ND(0.00000061)	NS	0.0000017 J
1,2,3,6,7,8-HxCDD	0.0000028 J	ND(0.00000061)	NS	0.0000031 J
1,2,3,7,8,9-HxCDD	0.0000026 J	ND(0.00000061)	NS	0.0000030 J
HxCDDs (total)	0.000028	ND(0.0000012)	NS	0.000039
1,2,3,4,6,7,8-HpCDD	0.000049	ND(0.00000054) X	NS	0.000030
HpCDDs (total)	0.000084	0.00000039	NS	0.000059
OCDD	0.00061			0.00017
Total TEQs (WHO TEFs)	0.000027	0.00000095	NS	0.000081
Inorganics				
Antimony	ND(6.00)	ND(6.00)	NS	ND(6.00)
Arsenic	5.60 J	1.30 J	NS	5.50 J
Barium	52.0	ND(20.0)	NS	50.0
Beryllium	ND(0.500)	0.200 B	NS	ND(0.500)
Cadmium	ND(0.500) J	ND(0.200) J	NS	ND(0.500) J
Chromium	25.0	8.50	NS	14.0
Cobalt	9.90	7.60	NS	11.0
Copper	36.0 J	7.20 J	NS	48.0 J
Cyanide	ND(0.130)	ND(0.160)	NS	0.120 B
Lead	38.0	3.70	NS	38.0
Mercury	0.350	ND(0.160)	NS	0.210
Nickel	18.0	12.0	NS	20.0
Selenium	ND(1.00) J	ND(1.20) J	NS	ND(1.10) J
Silver	0.780 B	ND(1.20)	NS	ND(1.10)
Sulfide	19.0	28.0	NS	25.0
Thallium	ND(2.00) J	ND(2.40) J	NS	ND(2.20) J
Tin	ND(10.0)	5.20 B	NS	ND(11.0)
Vanadium	11.0	8.20	NS	14.0
Zinc	83.0 J	47.0 J	NS	88.0 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID: Sample Depth(Feet):	RAA13-A84 1-3	RAA13-A84 6-8	RAA13-A84	RAA13-A86
Parameter Date Collected:	10/22/02	10/22/02	6-10 10/22/02	0-1 10/22/02
Volatile Organics	(U/LL/UL	10/22/02	10/22/02	10/22/02
1,2-Dibromo-3-chloropropane	ND(0.0067)	ND(0.0073)	NS	ND(0.0077)
Acetone	ND(0.0007)	ND(0.0073)	NS NS	ND(0.0077)
Benzene	ND(0.0067)	ND(0.029)	NS NS	ND(0.031)
Chlorobenzene	ND(0.0067)	ND(0.0073)	NS NS	ND(0.0077)
Tetrachloroethene	ND(0.0067)	ND(0.0073)	NS NS	ND(0.0077)
Toluene	ND(0.0067)	ND(0.0073)	NS NS	ND(0.0077)
Trichloroethene	ND(0.0067)	ND(0.0073)	NS NS	ND(0.0077) ND(0.0077)
Semivolatile Organics	14D(0.0007)	ND(0.0073)	INO	ND(0.0077)
	ND(0.44)	1 1/0	110/0.40	1 15/8 51
1,2,4-Trichlorobenzene	ND(0.44)	NS	ND(0.49)	ND(0.51)
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND(0.44)	NS NS	ND(0.49)	ND(0.51)
	ND(0.44)	NS	ND(0.49)	ND(0.51)
1,4-Dichlorobenzene	ND(0.44)	NS NS	ND(0.49)	ND(0.51)
2,4-Dimethylphenol	ND(0.44)	NS	ND(0.49)	ND(0.51)
2,4-Dinitrotoluene	ND(0.44)	NS NS	ND(0.49)	ND(0.51)
2-Chloronaphthalene	ND(0.44)	NS	ND(0.49)	ND(0.51)
2-Chlorophenol	ND(0.44)	NS	ND(0.49)	ND(0.51)
2-Methylnaphthalene	ND(0.44)	NS	ND(0.49)	ND(0.51)
2-Methylphenol	ND(0.44)	NS	ND(0.49)	ND(0.51)
3&4-Methylphenol	ND(0.89)	NS	ND(0.98)	ND(1.0)
3,3'-Dichlorobenzidine	ND(0.89)	NS	ND(0.98)	ND(1.0)
4-Chloro-3-Methylphenol	ND(0.44)	NS	ND(0.49)	ND(0.51)
4-Chloroaniline	ND(0.44)	NS	ND(0.49)	ND(0.51)
4-Nitrophenol	ND(2.3)	NS	ND(2.5)	ND(2.6)
Acenaphthene	ND(0.44)	NS	ND(0.49)	ND(0.51)
Acenaphthylene	ND(0.44)	NS	ND(0.49)	0.16 J
Aniline	ND(0.44)	NS	ND(0.49)	0.32 J
Anthracene	ND(0.44)	NS	ND(0.49)	0.11 J
Benzo(a)anthracene	ND(0.44)	NS	ND(0.49)	0.26 J
Benzo(a)pyrene	ND(0.44)	NS	ND(0.49)	0.26 J
Benzo(b)fluoranthene	ND(0.44)	NS	ND(0.49)	0.34 J
Benzo(g,h,i)perylene	ND(0.44)	NS	ND(0.49)	0.22 J
Benzo(k)fluoranthene	ND(0.44)	NS	ND(0.49)	ND(0.51)
bis(2-Ethylhexyl)phthalate	ND(0.44)	NS	ND(0.48)	ND(0.50)
Chrysene	ND(0.44)	NS	ND(0.49)	0.34 J
Dibenzo(a,h)anthracene	ND(0.44)	NS	ND(0.49)	ND(0.51)
Dibenzofuran	ND(0.44)	NS	ND(0.49)	ND(0.51)
Di-n-Butylphthalate	ND(0.44)	NS	ND(0.49)	ND(0.51)
Fluoranthene	ND(0.44)	NS	ND(0.49)	0.50 J
Fluorene	ND(0.44)	NS	ND(0.49)	ND(0.51)
Indeno(1,2,3-cd)pyrene	ND(0.44)	NS	ND(0.49)	0.16 J
Naphthalene	ND(0.44)	NS	ND(0.49)	ND(0.51)
N-Nitroso-di-n-propylamine	ND(0.44)	NS	ND(0.49)	ND(0.51)
Pentachlorophenol	ND(2.3)	NS	ND(2.5)	ND(2.6)
Phenanthrene	ND(0.44)	NS	ND(0.49)	0.37 J
Phenol	ND(0.44)	NS	ND(0.49)	ND(0.51)
Pronamide	ND(0.44)	NS	ND(0.49)	ND(0.51)
Pyrene	ND(0.44)	NS	ND(0.49)	0.60

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID: Sample Depth(Feet):	RAA13-A84 1-3	RAA13-A84 6-8	RAA13-A84 6-10	RAA13-A86 0-1
Parameter Date Collected:	10/22/02	10/22/02	10/22/02	10/22/02
Furans				
2,3,7,8-TCDF	0.0000012 J	NS	0.000022 YI	0.00048 Y
TCDFs (total)	0.0000075 I	NS	0.00022	0.00411
1,2,3,7,8-PeCDF	0.00000064 J	NS	0.000015	0.00034
2,3,4,7,8-PeCDF	0.00000082 J	NS	0.000028	0.00047
PeCDFs (total)	0.0000077	NS	0.000291	0.0043 I
1,2,3,4,7,8-HxCDF	0.0000012 J	NS	0.000054	0.0010
1,2,3,6,7,8-HxCDF	0.00000076 J	NS	0.000032	0.000591
1,2,3,7,8,9-HxCDF	ND(0.00000053)	NS	0.0000073	0.00011
2,3,4,6,7,8-HxCDF	0.0000064 J	NS	0.000021	0.00025
HxCDFs (total)	0.0000088	NS	0.00035	0.00481
1,2,3,4,6,7,8-HpCDF	0.0000021 J	NS	0.000068	0.0010
1,2,3,4,7,8,9-HpCDF	ND(0.00000028) X	NS	0.000014	0.00021
HpCDFs (total)	0.000035	NS	0.00014	0.0018
OCDF	0.0000014 J	NS	0.000062	0.0012
Dioxins		<u> </u>		
2,3,7,8-TCDD	ND(0.00000022)	NS	ND(0.00000049) X	0.0000040
TCDDs (total)	ND(0.00000070)	NS	0.0000040	0.000061
1,2,3,7,8-PeCDD	ND(0.00000053)	NS	ND(0.0000011) X	ND(0.000011) X
PeCDDs (total)	ND(0.00000098)	NS	0.0000080	0.000096
1,2,3,4,7,8-HxCDD	ND(0.00000053)	NS	0.00000074 J	0.0000081
1,2,3,6,7,8-HxCDD	ND(0.00000053)	NS	0.0000016 J	0.000014
1,2,3,7,8,9-HxCDD	ND(0.00000053)	NS	0.0000021 J	0.000013
HxCDDs (total)	ND(0.00000096)	NS	0.000016	0.00017
1,2,3,4,6,7,8-HpCDD	0.00000069 J	NS	0.000014	0.000096
HpCDDs (total)	0.0000012	NS	0.000028	0.00019
OCDD	ND(0.0000042)	NS	0.00011	0.00035
Total TEQs (WHO TEFs)	0.0000013	NS	0.000031	0.00052
Inorganics				
Antimony	ND(6.00)	NS	ND(6.00)	ND(6.00)
Arsenic	2.40 J	NS	4.80 J	5.10 J
Barium	26.0	NS	36.0	76.0
Beryllium	ND(0.500)	NS	ND(0.500)	ND(0.500)
Cadmium	ND(0.190) J	NS	ND(0.190) J	0.740 J
Chromium	9.20	NS	12.0	16.0
Cobalt	7.90	NS	9.60	10.0
Copper	10.0 J	NS	24.0 J	120 J
Cyanide	ND(0.130)	NS	ND(0.150)	ND(0.150)
Lead	5.50	NS	16.0	100
Mercury	ND(0.130)	NS	0.0720 B	0.260
Nickel	13.0	NS	17.0	20.0
Selenium	ND(1.00) J	NS	ND(1.10) J	ND(1.10) J
Silver	0.630 B	NS	ND(1.10)	ND(1.10)
Sulfide	21.0	NS	16.0	39.0
Thallium	ND(2.00) J	NS	ND(2.20) J	ND(2.30) J
Tin	4.30 B	NS	5,40 B	20.0
Vanadium	9.40	NS	11.0	13.0
Zinc	42.0 J	NS	62.0 J	190 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:	RAA13-A86	RAA13-A89	RAA13-A94	RAA13-A95	RAA13-A97
Sample Depth(Feet):	1-3	0-1	0-1	1-3	0-1
Parameter Date Collected:	10/22/02	10/04/02	09/30/02	09/26/02	10/09/02
Volatile Organics					·
1,2-Dibromo-3-chloropropane	ND(0.0068)	ND(0.0074)	ND(0.0062)	ND(0.0056)	ND(0.0070)
Acetone	ND(0.027)	ND(0.029)	ND(0.025) J	ND(0.022)	ND(0.028)
Benzene	ND(0.0068)	ND(0.0074)	ND(0.0062)	ND(0.0056)	ND(0.0070)
Chlorobenzene	ND(0.0068)	ND(0.0074)	ND(0.0062)	ND(0.0056)	ND(0.0070)
Tetrachloroethene	ND(0.0068)	ND(0.0074)	ND(0.0062)	ND(0.0056)	ND(0.0070)
Toluene	ND(0.0068)	ND(0.0074)	ND(0.0062)	ND(0.0056)	ND(0.0070)
Trichloroethene	ND(0.0068)	0.032	ND(0.0062)	ND(0.0056)	ND(0.0070)
Semivolatile Organics					
1,2,4-Trichlorobenzene	1.1	0.29 J	ND(0.42)	0.89	0.97
1,2-Dichlorobenzene	ND(0.46)	ND(0.49)	ND(0.42)	ND(0.45)	ND(0.60)
1,3-Dichlorobenzene	ND(0.46)	ND(0.49)	ND(0.42)	ND(0.45)	ND(0.60)
1,4-Dichlorobenzene	ND(0.46)	ND(0.49)	ND(0.42)	ND(0.45)	ND(0.60)
2,4-Dimethylphenol	ND(0.46)	ND(0.49)	ND(0.42)	ND(0.45)	ND(0.60)
2,4-Dinitrotoluene	ND(0.46)	ND(0.49)	ND(0.42)	ND(0.45)	ND(0.60)
2-Chloronaphthalene	ND(0.46)	ND(0.49)	ND(0.42)	ND(0.45)	ND(0.60)
2-Chlorophenol	ND(0.46)	ND(0.49)	ND(0.42)	ND(0.45)	ND(0.60)
2-Methylnaphthalene	ND(0.46)	ND(0.49)	0.42	ND(0.45)	ND(0.60)
2-Methylphenol	ND(0.46)	ND(0.49)	ND(0.42)	ND(0.45)	ND(0.60)
3&4-Methylphenol	ND(0.92)	ND(0.98)	ND(0.84)	ND(0.75)	ND(0.93)
3,3'-Dichlorobenzidine	ND(0.92)	ND(0.98)	ND(0.84)	ND(0.90) J	ND(1.2)
4-Chloro-3-Methylphenol	ND(0.46)	ND(0.49)	ND(0.42)	ND(0.45)	ND(0.60)
4-Chloroaniline	ND(0.46)	ND(0.49)	0.23 J	ND(0.45)	ND(0.60)
4-Nitrophenol	ND(2.3)	ND(2.5)	ND(2.1)	ND(2.2)	ND(3.0) J
Acenaphthene	ND(0.46)	ND(0.49)	0.28 J	ND(0.45)	ND(0.60)
Acenaphthylene	ND(0.46)	ND(0.49)	1.3	ND(0.45)	ND(0.60)
Aniline	0.16 J	0.11 J	ND(0.42)	36	1.6
Anthracene	ND(0.46)	ND(0.49)	1.4	ND(0.45)	ND(0.60)
Benzo(a)anthracene	0.12 J	0.24 J	2.8	ND(0.45)	ND(0.60)
Benzo(a)pyrene	0.12 J	0.24 J	2.6	0.094 J	ND(0.60)
Benzo(b)fluoranthene	0.14 J	0.50	2.5	0.034 J	ND(0.60)
Benzo(g,h,i)perylene	ND(0.46)	0.26 J	1.5	0.22 J 0.14 J	ND(0.60)
Benzo(k)fluoranthene	ND(0.46)	0.20 J	0.86	ND(0.45)	ND(0.60)
bis(2-Ethylhexyl)phthalate	ND(0.45)	ND(0.48)	ND(0.41)	ND(0.43)	ND(0.46)
Chrysene	0.11 J	0.26 J	3.4	ND(0.45)	ND(0.46)
Dibenzo(a,h)anthracene	ND(0.46)	ND(0.49)	0.41 J	ND(0.45)	ND(0.60)
Dibenzofuran	ND(0.46)	ND(0.49)	0.41 J		
Di-n-Butylphthalate	ND(0.46) ND(0.46)	ND(0.49) ND(0.49)	ND(0.42)	ND(0.45)	ND(0.60)
Fluoranthene	0.17 J	0.52	ND(0.42) 5.5	ND(0.45) 0.22 J	ND(0.60)
					0.24 J
Fluorene	ND(0.46)	ND(0.49)	0.62	ND(0.45)	ND(0.60)
Indeno(1,2,3-cd)pyrene	ND(0.46)	0.21 J	1.0	0.11 J	ND(0.60)
Naphthalene	ND(0.46)	ND(0.49)	0.61	ND(0.45)	ND(0.60)
N-Nitroso-di-n-propylamine	ND(0.46)	ND(0.49)	ND(0.42)	ND(0.45)	ND(0.60)
Pentachiorophenol	ND(2.3)	ND(2.5)	ND(2.1)	ND(2.2)	ND(3.0)
Phenanthrene	0.11 J	0.39 J	4.6	0.16 J	0.19 J
Phenol	ND(0.46)	ND(0.49)	ND(0.42)	ND(0.45)	0.20 J
Pronamide	ND(0.46)	ND(0.49)	ND(0.42)	ND(0.45)	ND(0.60)
Pyrene	0.22 J	0.42 J	7.9	0.22 J	0.31 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample/Location ID: Sample Depth(Feet):	RAA13-A86 1-3	RAA13-A89 0-1	RAA13-A94 0-1	RAA13-A95 1-3	RAA13-A97 0-1
Parameter	Date Collected:	10/22/02	10/04/02	09/30/02	09/26/02	10/09/02
Furans						
2,3,7,8-TCDF		0.0016 YEIJ	0.0013 YEQIJ	0.0000090 YQ	0.011 Y	0.011 YEIJ
TCDFs (total)		0.0201	0.0097	0.000020	0.074	0.094
1,2,3,7,8-PeCDF		0.0026 EJ	0.00069	0.0000027 J	0.0056 J	0.0072
2,3,4,7,8-PeCDF		0.0026 EJ	0.0011 EJ	0.0000041 JQ	0.0090	0.013 EJ
PeCDFs (total)		0.029 1	0.0098 Q	0.000025 Q	0.080 J	0.10
1,2,3,4,7,8-HxCDF		0.0055 EIJ	0.0015 EJ	0.000010	0.023	0.023 EIJ
1,2,3,6,7,8-HxCDF	`\	0.0036 EIJ	0.00076	0.000054	0.013	0.014 EIJ
1,2,3,7,8,9-HxCDF		0.00060	0.00021	0.0000015 JQ	0.0024	0.0033
2,3,4,6,7,8-HxCDF		0.0011	0.00054	0.0000017 J	0.0051	0.0077
HxCDFs (total)		0.021 I	0.0070 I	0.000046	0.093	0.10 l
1,2,3,4,6,7,8-HpCDF		0.0035 EJ	0.0018 EJ	0.0000094	0.019 J	0.022 EIJ
1,2,3,4,7,8,9-HpCDF	-	0.0011	0.00027	0.0000025 J	0.0048	0.0050
HpCDFs (total)		0.0062	0.0027 I	0.000016	0.032 J	0.037 1
OCDF	<u> </u>	0.0038	0.0014	0.0000068 J	0.022	0.023 EIJ
Dioxins	,		_	,	,	
2,3,7,8-TCDD		0.0000059	0.000015	ND(0.00000029)	0.000078	0.00012
TCDDs (total)		0.00017	0.00040	ND(0.00000029) Q	0.0016	0.0030 Q
1,2,3,7,8-PeCDD		0.000022	0.000071	ND(0.00000048)	0.00026	0.00040
PeCDDs (total)		0.00027	0.0010 Q	0.00000021 Q	0.0023 Q	0.0048 Q
1,2,3,4,7,8-HxCDD		0.000021	0.000051	ND(0.00000048)	0.00020	0.00033
1,2,3,6,7,8-HxCDD		0.000035	0.00017	0.00000038 J	0.00039	0.00061
1,2,3,7,8,9-HxCDD		0.000028	0.000099	0.00000040 J	0.00068	0.00051
HxCDDs (total)		0.00046	0.0019	0.0000019	0.0058	0.0078
1,2,3,4,6,7,8-HpCDE)	0.00023	0.00075	0.0000034 J	0.0018	0.0034
HpCDDs (total)		0.00052	0.0017	0.0000067	0.0039	0.0072
OCDD		0.00057	0.0037 EJ	0.000017	0.0029	0.0059
Total TEQs (WHO T	EFs)	0.0028	0.0012	0.0000056	0.011	0.014
Inorganics						
Antimony		1.90 B	14.0	ND(6.00)	ND(6.00)	8.60
Arsenic		7.50 J	7.70	7.60	6.00	10 J
Barium		71.0	160	ND(20.0)	200 J	280
Beryllium		ND(0.500)	0.140 B	0.130 B	ND(0.500)	ND(0.500)
Cadmium		0.620 J	1.60	0.160 B	2.10	3.00
Chromium		17.0	17.0	9.70	200	58.0
Cobalt		11.0	ND(5.00)	11.0	9.80	12.0
Copper		160 J	9500	35.0	890	3800
Cyanide		ND(0.140)	ND(0.150)	0.130	ND(0.220)	0.230
Lead		490	680	27.0	630 J	1200
Mercury		0.270	0.510	ND(0.120)	3.40	1.60
Nickel		24.0	75.0	19.0	36.0	40.0
Selenium		ND(1.00) J	ND(1.10)	ND(1.00)	ND(1.00)	ND(1.00)
Silver		ND(1.00)	ND(1.10)	0.380 B	1.50	ND(1.00) J
Sulfide		42.0	66.0	24.0	120	29.0
Thallium		ND(1.70) J	ND(2.20)	ND(1.90)	ND(1.70) J	1.60 B
Tin		45.0	530	ND(10.0)	57.0	66.0
Vanadium		12.0	9.90	6.20	9.40	15.0
Zinc		1200 J	760	48.0	890	1100 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:	RAA13-A99	RAA13-B1	RAA13-B2
Sample Depth(Feet):	0-1	0-1	6-8
Parameter Date Collected:	09/26/02	09/26/02	09/26/02
Volatile Organics			
1,2-Dibromo-3-chloropropane	ND(0.0052)	ND(0.0052)	ND(0.0070) J [ND(0.0075)]
Acetone	ND(0.021)	ND(0.021)	ND(0.028) [0.017 J]
Benzene	ND(0.0052)	ND(0.0052)	0.011 [0.014]
Chlorobenzene	ND(0.0052)	ND(0.00 <u>52)</u>	ND(0.0070) [ND(0.0075)]
Tetrachloroethene	ND(0.0052)	ND(0.0052)	ND(0.0070) [ND(0.0075)]
Toluene	ND(0.0052)	ND(0.0052)	0.0061 J [0.0080]
Trichloroethene	ND(0.0052)	ND(0.0052)	ND(0.0070) [ND(0.0075)]
Semivolatile Organics			
1,2,4-Trichlorobenzene	ND(0.42)	ND(0.38)	NS
1,2-Dichlorobenzene	ND(0.42)	ND(0.38)	NS
1,3-Dichlorobenzene	ND(0.42)	ND(0.38)	NS
1,4-Dichlorobenzene	ND(0.42)	ND(0.38)	NS
2,4-Dimethylphenol	ND(0.42)	ND(0.38)	NS
2,4-Dinitrotoluene	ND(0.42)	ND(0.38)	NS
2-Chloronaphthalene	ND(0.42)	ND(0.38)	NS
2-Chlorophenol	ND(0.42)	ND(0.38)	NS
2-Methylnaphthalene	0.37 J	ND(0.38)	NS
2-Methylphenol	ND(0.42)	ND(0.38)	NS
3&4-Methylphenol	ND(0.70)	ND(0.70)	NS
3,3'-Dichlorobenzidine	ND(0.84) J	ND(0.77) J	NS
4-Chloro-3-Methylphenol	ND(0.42)	ND(0.38)	NS
4-Chloroaniline	ND(0.42)	ND(0.38)	NS
4-Nitrophenol	ND(2.1)	ND(1.9)	NS
Acenaphthene	0.47	0.085 J	NS
Acenaphthylene	2.2	0.44	NS
Aniline	0.97	0.095 J	NS
Anthracene	3.5	0.37 J	NS NS
Benzo(a)anthracene	8.2	ND(0.38)	NS
Benzo(a)pyrene	4.8	0.95	NS
Benzo(b)fluoranthene	4.3	0.90	NS
Benzo(g,h,i)perylene	2.4	0.62	NS NS
Benzo(k)fluoranthene	1.4	0.29 J	NS NS
bis(2-Ethylhexyl)phthalate	ND(0.35)	ND(0.34)	NS
Chrysene	7.2	ND(0.38)	NS
Dibenzo(a,h)anthracene	0.67	0.17 J	NS NS
Dibenzofuran	0.19 J	ND(0.38)	NS
Di-n-Butylphthalate	ND(0.42)	ND(0.38)	NS
Fluoranthene	14	1.9	NS
Fluorene	1.6	0.20 J	NS
Indeno(1,2,3-cd)pyrene	1.7	0.44	NS
Naphthalene	0.88	0.13 J	NS
N-Nitroso-di-n-propylamine	ND(0.42)	ND(0.38)	NS NS
Pentachlorophenol	ND(2.1)	ND(1.9)	NS NS
Phenanthrene	15	1.6	NS NS
Phenol	0.14 J	ND(0.38)	NS
Pronamide	ND(0.42)	ND(0.38)	NS
Pyrene	23	2.8	NS NS

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location		RAA13-B1 0-1	RAA13-B2 6-8
Parameter Date Colle		09/26/02	09/26/02
Furans	00/20/02	UUIZUUZ	00/20.02
2,3,7,8-TCDF	0.000052 Y	0.000028 Y	NS
TCDFs (total)	0.00032 1	0.000028 1	NS NS
1,2,3,7,8-PeCDF	0.000231 0.000030 Q	0.000097 0.000016 J	NS NS
2,3,4,7,8-PeCDF	0.000030 Q 0.000041	0.000016 J	NS NS
PeCDFs (total)	0.00038 Q	0.00016 3 0.00014 Q	NS NS
1,2,3,4,7,8-HxCDF	0.00038 Q	0.000033	NS NS
1,2,3,6,7,8-HxCDF	0.000039	0.000033 0.000017 J	NS NS
1,2,3,7,8,9-HxCDF	0.000030 0.0000093 J	0.000017 J	NS NS
2,3,4,6,7,8-HxCDF	0.000033 J	0.00000473 0.0000087 J	NS NS
HxCDFs (total)	0.00030	0.00012	NS NS
1,2,3,4,6,7,8-HpCDF	0.00030	0.00012	NS NS
1,2,3,4,0,7,8-11pCDF	0.000034 0.000012 J	0.000026 0.0000066 J	NS NS
HpCDFs (total)	0.0000123	0.000044	NS NS
OCDF	0.000094 0.000046 J	0.000044 0.000024 J	NS NS
Dioxins	0.0000403	0.000024 0	110
2,3,7,8-TCDD	ND(0.0000013) X	ND(0.00000099)	NS
TCDDs (total)	0.0000055	ND(0.0000099)	NS NS
1,2,3,7,8-PeCDD	ND(0.0000011) X	ND(0.0000019)	NS NS
	0.0000058 Q	0.0000013 Q	
PeCDDs (total)			NS NS
1,2,3,4,7,8-HxCDD	0.0000014 J	ND(0.0000025)	NS NS
1,2,3,6,7,8-HxCDD	0.0000020 J	ND(0.0000025)	NS NS
1,2,3,7,8,9-HxCDD	ND(0.0000018) X	ND(0.00000089) X	NS NS
HxCDDs (total)	0.0000033	ND(0.000036)	NS NS
1,2,3,4,6,7,8-HpCDD	0.000014 J	0.0000055 J	NS NS
HpCDDs (total)	0.000028	0.000011	
OCDD	0.000069	0.000021 J	NS NS
Total TEQs (WHO TEFs)	0.000042	0.000020	NS
Inorganics		145/000	
Antimony	1.10 B	ND(6.00)	NS NS
Arsenic	4.70	10.0	NS NS
Barium	53.0 J	130 J	NS NS
Beryllium	ND(0.500)	ND(0.500)	NS NS
Cadmium	ND(0.500)	1.80	NS NS
Chromium	8.60 17.0	25.0	NS NS
Cobalt		9.80	NS NS
Copper	59.0	740 ND(0.210)	NS NC
Cyanide	0.140 B	ND(0.210)	NS NS
Lead	54.0 J	1000 J	NS NC
Mercury	0.0460 B	0.320	NS NS
Nickel	15.0 ND(1.00)	34.0 ND(4.00)	NS NS
Selenium		ND(1.00)	NS NC
Silver	ND(1.00)	1.10	NS NC
Sulfide	25.0	25.0	NS NS
Thallium	ND(1.60) J	ND(1.60) J	NS
Tin	ND(10.0)	98.0	NS NS
Vanadium	7.50	6.20	NS
Zinc	100	760	NS

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:		RAA13-B78	RAA13-B78	
Sample Depth(Feet):	6-10	0-1	1-3	
Parameter Date Collected:	09/26/02	10/24/02	10/24/02	
Volatile Organics				
1,2-Dibromo-3-chloropropane	NS	ND(0.0089)	ND(0.0067)	
Acetone	NS	0.042	ND(0.027)	
Benzene	NS	ND(0.0089)	ND(0.0067)	
Chlorobenzene	NS	ND(0.0089)	ND(0.0067)	
Tetrachloroethene	NS	ND(0.0089)	ND(0.0067)	
Toluene	NS	ND(0.0089)	ND(0.0067)	
Trichloroethene	NS	ND(0.0089)	ND(0.0067)	
Semivolatile Organics				
1,2,4-Trichlorobenzene	0.69 [1.0]	ND(0.71)	ND(0.49)	
1,2-Dichlorobenzene	ND(0.47) [ND(0.55)]	ND(0.71)	ND(0.49)	
1,3-Dichlorobenzene	ND(0.47) [0.18 J]	ND(0.71)	ND(0.49)	
1,4-Dichlorobenzene	0.26 J [0.62]	ND(0.71)	ND(0.49)	
2,4-Dimethylphenol	0.55 [1.4]	ND(0.71)	ND(0.49)	
2,4-Dinitrotoluene	ND(0.47) [ND(0.55)]	ND(0.71)	ND(0.49)	
2-Chloronaphthalene	ND(0.47) [ND(0.55)]	ND(0.71)	ND(0.49)	
2-Chlorophenol	ND(0.47) [ND(0.55)]	ND(0.71)	ND(0.49)	
2-Methylnaphthalene	0.22 J [0.47 J]	ND(0.71)	ND(0.49)	
2-Methylphenol	0.36 J [0.93]	ND(0.71)	ND(0.49)	
3&4-Methylphenol	0.87 J [2.3]	ND(1.2)	ND(0.90)	
3,3'-Dichlorobenzidine	ND(0.94) J [ND(1.1) J]	ND(1.4)	ND(0.98)	
4-Chloro-3-Methylphenol	ND(0.47) [ND(0.55)]	ND(0.71)	ND(0.49)	
4-Chloroaniline	0.16 J [ND(0.55)]	ND(0.71)	ND(0.49)	
4-Nitrophenol	ND(2.4) [ND(2.8)]	ND(3.6)	ND(2.4)	
Acenaphthene	0.32 J [0.54 J]	ND(0.71)	ND(0.49)	
Acenaphthylene	ND(0.47) [ND(0.55)]	ND(0.71)	0.12 J	
Aniline	3.1 [9.2]	ND(0.71)	0.12 J	
Anthracene	0.63 [1.1]	ND(0.71)	ND(0.49)	
Benzo(a)anthracene	2.0 [3.0]	ND(0.71)	0.33 J	
Benzo(a)pyrene	1.2 [1.6]	ND(0.71)	0.24 J	
Benzo(b)fluoranthene	1.6 [2.3]	0.22 J	0.31 J	
Benzo(g,h,i)perylene	0.70 [0.77]	ND(0.71)	0.21 J	
Benzo(k)fluoranthene	0.57 [0.88]	ND(0.71)	ND(0.49)	
bis(2-Ethylhexyl)phthalate	ND(0.46) [ND(0.50)]	ND(0.59)	ND(0.44)	
Chrysene	1.2 [2.0]	0.15 J	0.28 J	
Dibenzo(a,h)anthracene	0.23 J [0.26 J]	ND(0.71)	ND(0.49)	
Dibenzofuran	0.21 J [0.38 J]	ND(0.71)	ND(0.49)	
Di-n-Butylphthalate	0.47 J [ND(0.55)]	ND(0.71)	ND(0.49)	
Fluoranthene	3.4 [6.2]	0.17 J	0.41 J	
Fluorene	0.39 J [0.64]	ND(0.71)	ND(0.49)	
Indeno(1,2,3-cd)pyrene	0.59 [0.69]	ND(0.71)	0.14 J	
Naphthalene	0.41 J [0.96]	ND(0.71)	ND(0.49)	
N-Nitroso-di-n-propylamine	ND(0.47) [ND(0.55)]	ND(0.71)	ND(0.49)	
Pentachlorophenol	ND(2.4) [ND(2.8)]	ND(3.6)	ND(2.4)	
Phenanthrene	2.1 [4.0]	ND(0.71)	0.33 J	
Phenol	0.65 [1.6]	ND(0.71)	ND(0.49)	
Pronamide	ND(0.47) [ND(0.55)]	ND(0.71)	ND(0.49)	
Pyrene	2.9 [5.3]	0.26 J	0.50	

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Locati		RAA13-B78	RAA13-B78
Sample Depth(Parameter Date Colle		0-1 10/24/02	1-3 10/24/02
Furans	og/20/02	10/24/02	10/24/02
2,3,7,8-TCDF	0.0047 YEJ [0.0063 YEJ]	0.000031 Y	0.000094 Y
TCDFs (total)	0.039 Q [0.052 I]	0.0000311	0.00064
1,2,3,7,8-PeCDF	0.0039 Q (0.0032 I)	0.00021	0.00004
2,3,4,7,8-PeCDF	0.0040 [0.0068 I]	0.000033	0.000095
PeCDFs (total)	0.034 IQ [0.056 IQ]	0.00035	0.000093
1,2,3,4,7,8-HxCDF	0.010 EIJ [0.016 EIJ]	0.00033	0.00077
1,2,3,6,7,8-HxCDF	0.0056 [0.0077]	0.000088	0.00020
1,2,3,7,8,9-HxCDF	0.0010 Q [0.0013]	0.000002	0.00077
2,3,4,6,7,8-HxCDF	0.0022 [0.0030]	0.000001	0.000027
HxCDFs (total)	0.039 [0.058]	0.00037	0.00077
1,2,3,4,6,7,8-HpCDF	0.0085 [0.0031]	0.00037	0.00077
1,2,3,4,7,8,9-HpCDF	0.0026 [0.0027]	0.000078	0.00046
HpCDFs (total)	0.014 [0.017]	0.00013	0.00031
OCDF	0.0070 [0.011]	0.00014	0.00031
Dioxins	0.0070 [0.011]	0.00070	0.00024
2,3,7,8-TCDD	0.000026 [0.000031]	ND(0.00000041) X	ND(0.00000080) X
TCDDs (total)	0.0011 Q [0.0011]	0.0000019	0.000017
1,2,3,7,8-PeCDD	0.000046 [0.00011]	ND(0.0000019	ND(0.0000022) X
PeCDDs (total)	0.00094 Q [0.0013 Q]	0.0000051	0.000022
1,2,3,4,7,8-HxCDD	0.000079 [0.000094]	0.00000031 0.00000000 J	0.000022 0.0000016 J
1,2,3,6,7,8-HxCDD	0.00015 [0.00018]	0.0000003 J	0.00000163
1,2,3,7,8,9-HxCDD	0.00013 [0.00013]	ND(0.0000015) X	0.0000036 0.0000028 J
HxCDDs (total)	0.0021 [0.0023]	0.000021	0.000048
1,2,3,4,6,7,8-HpCDD	0.00077 [0.00090]	0.000021	0.000040
HpCDDs (total)	0.0015 [0.0018]	0.00010	0.00012
OCDD	0.0012 [0.0014]	0.00075	0.00078
Total TEQs (WHO TEFs)	0.0048 [0.0075]	0.00073	0.00070
Inorganics	0.00.00(0.00)	1 0.000011	0.00011
Antimony	22.0 [18.0]	1.60 B	ND(6.00)
Arsenic	26.0 [22.0]	4.50	3.60
Barium	1200 J [980 J]	57.0	45.0
Beryllium	ND(0.500) [ND(0.500)]	ND(0.500)	0.860
Cadmium	15.0 [14.0]	0.930	1.10
Chromium	94.0 [86.0]	25.0	17.0
Cobalt	10.0 [10.0]	12.0	7.90
Copper	2500 [2100]	36.0	50.0
Cyanide	0.230 [0.720]	0.190	0.160
Lead .	4500 J [3400 J]	49.0	92.0
Mercury	2.30 [2.40]	0.310	0.200
Nickel	110 [92.0]	20.0	13.0
Selenium	ND(1.00) [ND(1.10)]	ND(1.30) J	ND(0.660) J
Silver	6.40 [5.60]	ND(1.30)	0.620 B
Sulfide	880 [470]	ND(8.90)	28.0
Thallium	ND(1.10) J [ND(2.30) J]	ND(2.70) J	ND(2.00) J
Tin	270 [240]	14.0	13.0
Vanadium	14.0 [14.0]	19.0	12.0
Zinc	4400 [4100]	130 J	140 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:	RAA13-B78	RAA13-B78	RAA13-B79	RAA13-B79
Sample Depth(Feet): Parameter Date Collected:	3-6 10/24/02	4-6 10/24/02	0-1 10/24/02	1-3 10/24/02
Volatile Organics	.012-17-02	10/24/02	1012-1102	10/2-7/02
1,2-Dibromo-3-chloropropane	NS	ND(0.0064)	ND(0.0077)	ND(0.0068)
Acetone	NS	ND(0.026)	0.023 J	ND(0.0000)
Benzene	NS NS	ND(0.026)	ND(0.0077)	ND(0.0068)
Chlorobenzene	NS NS	ND(0.0064)	ND(0.0077)	ND(0.0068)
Tetrachloroethene	NS	ND(0.0064)	ND(0.0077)	ND(0.0068)
Toluene	NS	ND(0.0064)	ND(0.0077)	ND(0.0068)
Trichloroethene	NS	ND(0.0064)	ND(0.0077)	ND(0.0068)
Semivolatile Organics		(0.0004)	110(0.0077)	142(0.0000)
1.2.4-Trichlorobenzene	ND(0.43)	l NS	ND(0.77)	ND(0.45)
1,2-Dichlorobenzene	ND(0.43)	NS NS	ND(0.77)	ND(0.45) ND(0.45)
1,3-Dichlorobenzene	ND(0.43)	NS NS	ND(0.77) ND(0.77)	ND(0.45) ND(0.45)
1,4-Dichlorobenzene	ND(0.43)	NS NS		
2,4-Dimethylphenol	ND(0.43)	NS NS	ND(0.77) ND(0.77)	ND(0.45) ND(0.45)
2,4-Dinitrotoluene	ND(0.43)	NS NS	ND(0.77) ND(0.77)	
2-Chloronaphthalene	ND(0.43)	NS NS	ND(0.77) ND(0.77)	ND(0.45) ND(0.45)
2-Chlorophenol	ND(0.43)	NS NS	ND(0.77)	ND(0.45) ND(0.45)
2-Methylnaphthalene	ND(0.43)	NS NS	ND(0.77)	0.51
2-Methylphenol	ND(0.43)	NS NS	ND(0.77)	0.096 J
3&4-Methylphenol	ND(0.43)	NS NS	ND(1.0)	<u> </u>
3,3'-Dichlorobenzidine	ND(0.86)	NS NS		0.24 J
4-Chloro-3-Methylphenol	ND(0.43)	NS NS	ND(1.5)	ND(0.91) ND(0.45)
4-Chloroaniline		NS NS	ND(0.77)	
4-Olitrophenol	ND(0.43)		ND(0.77)	ND(0.45)
Acenaphthene	ND(2.2)	NS NS	ND(3.8)	ND(2.3)
	ND(0.43)	NS NS	ND(0.77)	0.17 J
Acenaphthylene Aniline	ND(0.43)		ND(0.77)	1.4
Anthracene	ND(0.43)	NS NS	0.25 J	4.0
	ND(0.43)	NS NS	ND(0.77)	0.83
Benzo(a)anthracene	0.14 J ND(0.43)	NS NS	0.23 J	2.0
Benzo(a)pyrene Benzo(b)fluoranthene	0.13 J		0.16 J 0.23 J	2.2
		NS NS		2.4
Benzo(g,h,i)perylene Benzo(k)fluoranthene	0.092 J	NS NS	ND(0.77)	2.0
bis(2-Ethylhexyl)phthalate	ND(0.43)	NS NS	ND(0.77)	0.90
Chrysene	ND(0.42) 0.13 J		ND(0.51)	ND(0.45)
Dibenzo(a,h)anthracene	ND(0.43)	NS NS	0.22 J ND(0.77)	1.8
Dibenzo(a,n)anthracene Dibenzofuran	ND(0.43) ND(0.43)	NS NS		0.49 0.097 J
Di-n-Butylphthalate	ND(0.43) ND(0.43)	NS NS	ND(0.77)	
Fluoranthene	0.10 J	NS NS	ND(0.77)	ND(0.45)
Fluorene	ND(0.43)	NS NS	0.41 J ND(0.77)	2.5 0.29 J
Indeno(1,2,3-cd)pyrene	ND(0.43)	NS NS	ND(0.77) ND(0.77)	1.6
Naphthalene	ND(0.43)	NS NS	ND(0.77) ND(0.77)	0.83
N-Nitroso-di-n-propylamine	ND(0.43)	NS NS	ND(0.77) ND(0.77)	ND(0.45)
Pentachlorophenol	ND(2.2)	NS NS	ND(0.77) ND(3.8)	
Phenanthrene	ND(2.2) ND(0.43)	NS NS		ND(2.3)
Phenol	ND(0.43)	NS NS	0.28 J	1.9 ND(0.45)
Pronamide	0.45	NS NS	ND(0.77)	ND(0.45)
Pyrene Pronamide	0.45 0.20 J	NS NS	ND(0.77) 0.58 J	ND(0.45) 2.8

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID: Sample Depth(Feet):	RAA13-B78 3-6	RAA13-B78 4-6	RAA13-B79 0-1	RAA13-B79 1-3
Parameter Date Collected:	10/24/02	10/24/02	10/24/02	10/24/02
Furans		•		<u> </u>
2,3,7,8-TCDF	0.0000073 Y	NS	0.000035 Y	0.000064 Y
TCDFs (total)	0.000047	NS	0.00033	0.00062
1,2,3,7,8-PeCDF	0.0000043 J	NS	0.000015	0.000051
2,3,4,7,8-PeCDF	0.0000046 J	NS	0.000022	0.000061
PeCDFs (total)	0.000038	NS	0.00026	0.00056
1,2,3,4,7,8-HxCDF	0.0000077	NS	0.000027	0.00011
1,2,3,6,7,8-HxCDF	0.0000039 J	NS	0.000016	0.000059
1,2,3,7,8,9-HxCDF	0.0000014 J	NS	0.0000038 J	0.000016
2,3,4,6,7,8-HxCDF	0.0000022 J	NS	0.000018	0.000043
HxCDFs (total)	0.000029	NS	0.00028	0.00052
1,2,3,4,6,7,8-HpCDF	0.0000067	NS	0.000042	0.00014
1,2,3,4,7,8,9-HpCDF	0.0000018 J	NS	0.0000074	0.000024
HpCDFs (total)	0.000011	NS	0.000099	0.00022
OCDF	0.0000067 J	NS	0.000038	0.00015
Dioxins			·	<u> </u>
2,3,7,8-TCDD	ND(0.00000027) X	NS	ND(0.00000059) X	ND(0.0000013) X
TCDDs (total)	0.000024	NS	0.000079	0.000044
1,2,3,7,8-PeCDD	0.00000030 J	NS	0.0000012 J	0.0000035 J
PeCDDs (total)	0.0000033	NS	0.000011	0.000055
1,2,3,4,7,8-HxCDD	ND(0.00000025) X	NS	ND(0.0000011) X	0.0000030 J
1,2,3,6,7,8-HxCDD	0.0000054 J	NS	0.0000021 J	0.0000076
1,2,3,7,8,9-HxCDD	ND(0.00000036) X	NS	0.0000017 J	0.0000052 J
HxCDDs (total)	0.000056	NS	0.000024	0.000094
1,2,3,4,6,7,8-HpCDD	0.0000021 J	NS	0.000018	0.000064
HpCDDs (total)	0.0000037	NS	0.000036	0.00012
OCDD	ND(0.0000091)	NS	0.00010	0.00060
Total TEQs (WHO TEFs)	0.0000054	NS	0.000024	0.000070
Inorganics		I		
Antimony	ND(6.00)	NS	ND(6.00)	ND(6.00)
Arsenic	3.50	NS	5.80	9.10
Barium	47.0	NS	62.0	130
Beryllium	ND(0.500)	NS	ND(0.500)	ND(0.500)
Cadmium	0.500	NS	0.970	3.20
Chromium	14.0	NS	15.0	36.0
Cobalt	8.60	NS	11.0	8.90
Copper	20.0	NS	36.0	470
Cyanide	0.100 B	NS	0.260	1.10
Lead	26.0	NS	66.0	1000
Mercury	0.160	NS	0.220	0.480
Nickel	14.0	NS	21.0	24.0
Selenium	ND(1.00) J	NS	ND(1.20) J	ND(0.710) J
Silver	ND(1.00)	NS	ND(1.20)	ND(1.00)
Sulfide	29.0	NS	15.0	37.0
Thallium	ND(1.90) J	NS	ND(2.30) J	ND(2.00) J
Tin	ND(10.0)	NS	ND(12.0)	89.0
Vanadium	12.0	NS	18.0	14.0
Zinc	68.0 J	NS	230 J	750 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID: Sample Depth(Feet):	RAA13-B79 6-10	RAA13-B79 8-10	RAA13-B84 0-1	RAA13-B84 1-3
Parameter Date Collected:	10/24/02	10/24/02	10/25/02	10/25/02
Volatile Organics	The street will be supplied to the street of			
1,2-Dibromo-3-chloropropane	NS NS	ND(0.0070)	ND(0.0074)	ND(0.0071) J
Acetone	NS	ND(0.028)	0.020 J	ND(0.028) J
Benzene	NS	ND(0.0070)	ND(0.0074)	ND(0.0071) J
Chlorobenzene	NS	ND(0.0070)	ND(0.0074)	ND(0.0071) J
Tetrachloroethene	NS	ND(0.0070)	ND(0.0074)	ND(0.0071) J
Toluene	NS	ND(0.0070)	ND(0.0074)	ND(0.0071) J
Trichloroethene	NS	ND(0.0070)	ND(0.0074)	ND(0.0071) J
Semivolatile Organics	The Section of the Control of the Co	r de Projekt industrije.		
1,2,4-Trichlorobenzene	ND(0.47)	l NS	ND(0.49)	ND(0.47)
1,2-Dichlorobenzene	ND(0.47)	NS	ND(0.49)	ND(0.47)
1,3-Dichlorobenzene	ND(0.47)	NS	ND(0.49)	ND(0.47)
1,4-Dichlorobenzene	ND(0.47)	NS	ND(0.49)	ND(0.47)
2,4-Dimethylphenol	ND(0.47)	NS	ND(0.49)	ND(0.47)
2,4-Dinitrotoluene	ND(0.47)	NS	ND(0.49)	ND(0.47)
2-Chloronaphthalene	ND(0.47)	NS	ND(0.49)	ND(0.47)
2-Chlorophenol	ND(0.47)	NS	ND(0.49)	ND(0.47)
2-Methylnaphthalene	ND(0.47)	NS	ND(0.49)	ND(0.47)
2-Methylphenol	ND(0.47)	NS	ND(0.49)	ND(0.47)
3&4-Methylphenol	ND(0.94)	NS	ND(0.99)	ND(0.95)
3,3'-Dichlorobenzidine	ND(0.94)	NS I	ND(0.99)	ND(0.95)
4-Chloro-3-Methylphenol	ND(0.47)	NS	ND(0.49)	ND(0.47)
4-Chloroaniline	ND(0.47)	NS	ND(0.49)	ND(0.47)
4-Nitrophenol	ND(2.4)	NS	ND(2.5)	ND(2.4)
Acenaphthene	ND(0.47)	NS NS	ND(0.49)	ND(0.47)
Acenaphthylene	ND(0.47)	NS	ND(0.49)	ND(0.47)
Aniline	ND(0.47)	NS	ND(0.49)	ND(0.47)
Anthracene	ND(0.47)	NS I	ND(0.49)	ND(0.47)
Benzo(a)anthracene	ND(0.47)	NS	ND(0.49)	ND(0.47)
Benzo(a)pyrene	ND(0.47)	NS NS	ND(0.49)	ND(0.47)
Benzo(b)fluoranthene	ND(0.47)	NS NS	ND(0.49)	ND(0.47)
Benzo(g,h,i)perylene	ND(0.47)	NS	ND(0.49)	ND(0.47)
Benzo(k)fluoranthene	ND(0.47)	NS NS	ND(0.49)	ND(0.47)
bis(2-Ethylhexyl)phthalate	ND(0.46)	NS NS	ND(0.49)	ND(0.47)
Chrysene	ND(0.47)	NS NS	ND(0.49)	ND(0.47)
Dibenzo(a,h)anthracene	ND(0.47)	NS NS	ND(0.49)	ND(0.47) ND(0.47)
Dibenzofuran Dibenzofuran	ND(0.47)	NS NS	ND(0.49)	
Di-n-Butylphthalate	ND(0.47) ND(0.47)	NS NS		ND(0.47)
Fluoranthene	ND(0.47) ND(0.47)	NS NS	ND(0.49)	ND(0.47)
Fluorene	ND(0.47) ND(0.47)	NS NS	ND(0.49)	ND(0.47)
Indeno(1,2,3-cd)pyrene	ND(0.47) ND(0.47)	NS NS	ND(0.49)	ND(0.47)
Naphthalene		NS NS	ND(0.49)	ND(0.47)
N-Nitroso-di-n-propylamine	ND(0.47)		ND(0.49)	ND(0.47)
	ND(0.47)	NS NS	ND(0.49)	ND(0.47)
Pentachiorophenol	ND(2.4)	NS NS	ND(2.5)	ND(2.4)
Phenanthrene	ND(0.47)	NS	ND(0.49)	ND(0.47)
Phenol	ND(0.47)	NS	ND(0.49)	ND(0.47)
Pronamide	ND(0.47)	NS NS	ND(0.49)	ND(0.47)
Pyrene	ND(0.47)	NS	ND(0.49)	ND(0.47)

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample Depth(Feet): Date Collected:	6-10 10/24/02 0.0000011 J 0.0000011 0.00000030 J ND(0.00000020) X 0.00000030	8-10 10/24/02 NS NS NS	0-1 10/25/02 0.000037 Y 0.00023	1-3 10/25/02 0.00000064 J 0.0000039
	0.0000011 J 0.0000011 0.0000030 J ND(0.00000020) X	NS NS NS	0.000037 Y 0.00023	0.00000064 J
	0.0000011 0.00000030 J ND(0.00000020) X	NS NS	0.00023	
	0.0000011 0.00000030 J ND(0.00000020) X	NS NS	0.00023	
	0.00000030 J ND(0.00000020) X	NS		
	ND(0.00000020) X		0.000013	0.0000033 0.0000044 J
		NS	0.000013	ND(0.00000443
		NS	0.00017	0.0000025
	ND(0.00000053)	NS	0.00017	0.0000023 0.0000052 J
	ND(0.00000033)	NS	0.000017	ND(0.00000323
	ND(0.00000053)	NS	0.000010 0.0000027 J	ND(0.00000037) X
	ND(0.00000053)	NS NS	0.00000273	0.00000015)
	ND(0.00000053)	NS NS	0.000099	0.00000263
				0.00000075 J
				0.00000017 J
				0.0000013
	140(0.0000011)	INO	0.000025	0.00000097 J
	ND(0.00000000)		1 h m (0 0000000 1) V	
				ND(0.00000022)
				ND(0.00000045)
	***************************************			ND(0.00000056)
				ND(0.00000056)
`				ND(0.00000056)
				ND(0.00000056)
				ND(0.00000056)
				ND(0.00000098)
				ND(0.00000072) X
			0.000024	ND(0.00000056)
			0.00010	ND(0.0000038)
Fs)	0.00000079	NS	0.000018	0.00000078
	ND(6.00)	NS	1.30 B	ND(6.00)
	4.20	NS	6.50	5.20
	54.0	NS	48.0	28.0
	ND(0.500)	NS	0.900	ND(0.500)
	0.540	NS		ND(0.500)
	18.0	NS		9.80 J
	9.80			12.0
	17.0			24.0 J
				ND(0.140)
				12.0
				0.0560 B
				18.0 J
				ND(1.10)
				ND(1.10)
		······································	<u>-</u>	16.0 J
				ND(2.10)
			· · · · · · · · · · · · · · · · · · ·	5.30 B
				10.0 J 50.0 J
	Fs)	0.00000048 J ND(0.00000053) ND(0.00000048) ND(0.00000011) ND(0.00000011) ND(0.00000060) ND(0.00000053) ND(0.00000053) ND(0.00000053) ND(0.00000053) ND(0.00000053) ND(0.00000053) ND(0.00000053) ND(0.00000059) ND(0.00000012) ND(0.00000047) ND(0.00000047) ND(0.00000047) ND(0.00000020) Fs) ND(6.00) 4.20 54.0 ND(0.500) 0.540 18.0 9.80	0.00000048 J NS	0.0000048 J NS

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location		AA13-B84	RAA13-B84	RAA13-B86
Sample Depth(6-10	8-10	0-1
Parameter Date Colle	ected:	10/25/02	10/25/02	10/24/02
Volatile Organics	**			
1,2-Dibromo-3-chloropropane		NS	ND(0.0070) [ND(0.0074)]	ND(0.011) J
Acetone		NS	ND(0.028) [ND(0.030)]	ND(0.046)
Benzene		NS	ND(0.0070) [ND(0.0074)]	ND(0.011)
Chlorobenzene		NS	ND(0.0070) [ND(0.0074)]	ND(0.011)
Tetrachloroethene		NS	ND(0.0070) [ND(0.0074)]	ND(0.011)
Toluene		NS	ND(0.0070) [ND(0.0074)]	ND(0.011)
Trichloroethene		NS	ND(0.0070) [ND(0.0074)]	ND(0.011)
Semivolatile Organics		-		
1,2,4-Trichlorobenzene	ND(0.	47) [ND(0.49)]	NS	ND(1.3)
1,2-Dichlorobenzene	ND(0.	47) [ND(0.49)]	NS	ND(1.3)
1,3-Dichlorobenzene		47) [ND(0.49)]	NS	ND(1.3)
1,4-Dichlorobenzene		47) [ND(0.49)]	NS	ND(1.3)
2,4-Dimethylphenol		47) [ND(0.49)]	NS	ND(1.3)
2,4-Dinitrotoluene		47) [ND(0.49)]	NS	ND(1.3)
2-Chloronaphthalene		47) [ND(0.49)]	NS	ND(1.3)
2-Chlorophenol		47) [ND(0.49)]	NS	ND(1.3)
2-Methylnaphthalene	ND(0.	47) [ND(0.49)]	NS	0.37 J
2-Methylphenol		47) [ND(0.49)]	NS	ND(1.3)
3&4-Methylphenol		94) [ND(0.99)]	NS	ND(1.5)
3,3'-Dichlorobenzidine		94) [ND(0.99)]	NS	ND(2.6)
4-Chloro-3-Methylphenol		47) [ND(0.49)]	NS	ND(1.3)
4-Chloroaniline	`	47) [ND(0.49)]	NS	ND(1.3)
4-Nitrophenol		2.4) [ND(2.5)]	NS	ND(6.5)
Acenaphthene		47) [ND(0.49)]	NS	0.52 J
Acenaphthylene	ND(0	47) [ND(0.49)]	NS	2.0
Aniline		47) [ND(0.49)]	NS	0.50 J
Anthracene		47) [ND(0.49)]	NS	1.9
Benzo(a)anthracene		47) [ND(0.49)]	NS	5.3
Benzo(a)pyrene		47) [ND(0.49)]	NS	5.8
Benzo(b)fluoranthene		47) [ND(0.49)]	NS	8.1
Benzo(g,h,i)perylene		47) [ND(0.49)]	NS NS	5.0
Benzo(k)fluoranthene		47) [ND(0.49)]	NS	3.1
bis(2-Ethylhexyl)phthalate		46) [ND(0.49)]	NS	ND(0.75)
Chrysene		47) [ND(0.49)]	NS	7.5
Dibenzo(a,h)anthracene		47) [ND(0.49)]	NS	1.2 J
Dibenzofuran		47) [ND(0.49)]	NS	0.31 J
Di-n-Butylphthalate		47) [ND(0.49)]	NS	ND(1.3)
Fluoranthene		47) [ND(0.49)]	NS NS	13
Fluorene		47) [ND(0.49)]	NS NS	0.70 J
Indeno(1,2,3-cd)pyrene		47) [ND(0.49)]	NS NS	4.4
Naphthalene		47) [ND(0.49)]	NS NS	0.78 J
N-Nitroso-di-n-propylamine	~~~~~	47) [ND(0.49)]	NS NS	ND(1.3)
Pentachlorophenol		2.4) [ND(2.5)]	NS NS	ND(6.5)
Phenanthrene	The state of the s	47) [ND(0.49)]	NS NS	6.0
Phenol		47) [ND(0.49)]	NS NS	ND(1.3)
Pronamide		47) [ND(0.49)]	NS NS	ND(1.3)
Pyrene		47) [ND(0.49)] 47) [ND(0.49)]	NS NS	13

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

	Sample/Location ID: Sample Depth(Feet):	RAA13-B84 6-10	RAA13-B84 8-10	RAA13-B86 0-1
Parameter	Date Collected:	10/25/02	10/25/02	10/24/02
Furans				
2,3,7,8-TCDF		ND(0.00000018) X [0.00000023 J]	NS	0.00026 Y
TCDFs (total)		ND(0.00000022) [0.00000041]	NS	0.0032 I
1,2,3,7,8-PeCDF		0.00000020 J [ND(0.00000019) X]	NS	0.000091
2,3,4,7,8-PeCDF		ND(0.00000018) X [ND(0.00000020) X]	NS	0.00030
PeCDFs (total)		ND(0.00000020) [ND(0.00000017)]	NS	0.0038 I
1,2,3,4,7,8-HxCDF		0.00000019 J [ND(0.00000020) X]	NS	0.00030
1,2,3,6,7,8-HxCDF		0.00000018 J [ND(0.00000020) X]	NS	0.00015
1,2,3,7,8,9-HxCDF		ND(0.00000056) [ND(0.00000058)]	NS	0.000056
2,3,4,6,7,8-HxCDF		0.00000012 J [ND(0.00000013) X]	NS	0.00023
HxCDFs (total)		0.00000083 [ND(0.00000011)]	NS	0.0044 Q
1,2,3,4,6,7,8-HpCDF		ND(0.00000018) X [ND(0.00000024)]	NS	0.00043
1,2,3,4,7,8,9-HpCDF		ND(0.00000056) [ND(0.00000058)]	NS	0.000077
HpCDFs (total)		ND(0.00000056) [ND(0.00000024)]	NS	0.0012
OCDF		ND(0.00000044) X [ND(0.00000029) X]	NS	0.00042
Dioxins				
2,3,7,8-TCDD		ND(0.00000022) [ND(0.00000023) X]	NS	0.000014
TCDDs (total)		0.00000029 J [0.00000015 J]	NS	0.000037
1,2,3,7,8-PeCDD		ND(0.00000056) [ND(0.00000058)]	NS	0.0000077 J
PeCDDs (total)		0.00000054 J [0.00000032 J]	NS	0.000058
1,2,3,4,7,8-HxCDD		ND(0.0000056) [ND(0.0000058)]	NS	0.000012
1,2,3,6,7,8-HxCDD		ND(0.00000056) [ND(0.00000058)]	NS	0.000022
1,2,3,7,8,9-HxCDD		ND(0.00000056) [ND(0.00000058)]	NS	0.000018
HxCDDs (total)		0.00000037 J [0.00000019 J]	NS	0.00024
1,2,3,4,6,7,8-HpCDI		ND(0.00000044) [ND(0.00000048)]	NS	0.00033
HpCDDs (total)		ND(0.00000044) [ND(0.00000048)]	NS	0.00083
OCDD		ND(0.0000037) [ND(0.0000030)]	NS	0.0022
Total TEQs (WHO T	EFs)	0.00000062 [0.00000063]	NS	0.00029
Inorganics				
Antimony		ND(6.00) [ND(6.00)]	NS	ND(6.00)
Arsenic		11.0 [12.0]	NS	24.0
Barium		69.0 [59.0]	NS	140
Beryllium		0.600 [0.560]	NS	0.680
Cadmium		0.740 [0.740]	NS	5.00
Chromium		11.0 J [13.0 J]	NS	81.0
Cobalt		17.0 [16.0]	NS	20.0
Copper		38.0 J [38.0 J]	NS	150
Cyanide		ND(0.140) [ND(0.150)]	NS	1.30
Lead		18.0 [16.0]	NS	510
Mercury		ND(0.140) [ND(0.150)]	NS	0.990
Nickel		27.0 J [26.0 J]	NS	47.0
Selenium		ND(1.00) [ND(1.10)]	NS	ND(1.10) J
Silver		ND(1.00) [ND(1.10)]	NS	ND(1.70)
Sulfide		11.0 J [ND(7.40) J]	NS	190
Thallium		ND(2.10) [ND(2.20)]	NS	ND(3.40) J
Tin		4.60 B [4.60 B]	NS	30.0
Vanadium		11.0 J [11.0 J]	NS	47.0
Zinc		71.0 J [74.0 J]	NS	910 J

Page 18 of 55

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:	RAA13-B86	RAA13-B86	RAA13-B86	RAA13-B87
Sample Depth(Feet):	1-3	3-6	4-6	0-1
Parameter Date Collected:	10/24/02	10/24/02	10/24/02	10/24/02
Volatile Organics				
1,2-Dibromo-3-chloropropane	ND(0.014) J	NS	ND(0.011)	ND(0.0088) J
Acetone	0.030 J	NS	ND(0.045)	0.034 J
Benzene	ND(0.014)	NS	ND(0.011)	ND(0.0088)
Chlorobenzene	ND(0.014)	NS	ND(0.011)	ND(0.0088)
Tetrachloroethene	ND(0.014)	NS	ND(0.011)	ND(0.0088)
Toluene	ND(0.014)	NS	ND(0.011)	ND(0.0088)
Trichloroethene	ND(0.014)	NS	ND(0.011)	0.0090
Semivolatile Organics				
1,2,4-Trichlorobenzene	ND(1.5)	ND(1.6)	NS	0.71 J
1,2-Dichlorobenzene	ND(1.5)	ND(1.6)	NS	ND(1.1)
1,3-Dichlorobenzene	ND(1.5)	ND(1.6)	NS I	0.34 J
1,4-Dichlorobenzene	ND(1.5)	ND(1.6)	NS	1.3
2,4-Dimethylphenol	ND(1.5)	ND(1.6)	NS	ND(1.1)
2,4-Dinitrotoluene	ND(1.5)	ND(1.6)	NS	ND(1.1)
2-Chloronaphthalene	ND(1.5)	ND(1.6)	NS	ND(1.1)
2-Chlorophenol	ND(1.5)	ND(1.6)	NS	ND(1.1)
2-Methylnaphthalene	ND(1.5)	ND(1.6)	NS	0.57 J
2-Methylphenol	ND(1.5)	ND(1.6)	NS	ND(1.1)
3&4-Methylphenol	ND(1.8)	ND(1.6)	NS	ND(1.2)
3,3'-Dichlorobenzidine	ND(3.1)	ND(3.1)	NS	ND(2.1)
4-Chloro-3-Methylphenol	ND(1.5)	ND(1.6)	NS	ND(1.1)
4-Chloroaniline	ND(1.5)	ND(1.6)	NS	ND(1.1)
4-Nitrophenol	ND(7.7)	ND(7.8)	NS	ND(5.3)
Acenaphthene	ND(1.5)	ND(1.6)	NS	ND(1.1)
Acenaphthylene	ND(1.5)	ND(1.6)	NS	5.4
Aniline	ND(1.5)	ND(1.6)	NS	3.7
Anthracene	ND(1.5)	ND(1.6)	NS	3.2
Benzo(a)anthracene	ND(1.5)	ND(1.6)	NS	8.2
Benzo(a)pyrene	0.43 J	ND(1.6)	NS	9.3
Benzo(b)fluoranthene	0.32 J	ND(1.6)	NS	14
Benzo(g,h,i)perylene	ND(1.5)	ND(1.6)	NS	9.3
Benzo(k)fluoranthene	ND(1.5)	ND(1.6)	NS	4.9
bis(2-Ethylhexyl)phthalate	ND(0.89)	ND(0.78)	. NS	ND(0.58)
Chrysene	ND(1.5)	ND(1.6)	NS	13
Dibenzo(a,h)anthracene	ND(1.5)	ND(1.6)	NS	2.0
Dibenzofuran	ND(1.5)	ND(1.6)	NS	0.38 J
Di-n-Butylphthalate	ND(1.5)	ND(1.6)	NS	ND(1.1)
Fluoranthene	0.44 J	ND(1.6)	NS	15
Fluorene	ND(1.5)	ND(1.6)	NS	1.0 J
Indeno(1,2,3-cd)pyrene	ND(1.5)	ND(1.6)	NS	7.5
Naphthalene	ND(1.5)	ND(1.6)	NS	0.84 J
N-Nitroso-di-n-propylamine	ND(1.5)	ND(1.6)	NS	ND(1.1)
Pentachlorophenol	ND(7.7)	ND(7.8)	NS	ND(5.3)
Phenanthrene	ND(1.5)	ND(1.6)	NS	7.0
Phenol	ND(1.5)	ND(1.6)	NS	ND(1.1)
Pronamide	ND(1.5)	ND(1.6)	NS	ND(1.1)
Pyrene	0.50 J	ND(1.6)	NS	23

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	le/Location ID: le Depth(Feet):	RAA13-B86 1-3	RAA13-B86 3-6	RAA13-B86 4-6	RAA13-B87
	Date Collected:	10/24/02	10/24/02	10/24/02	0-1 10/24/02
Furans			100-00-	10,2,02	10/21/02
2,3,7,8-TCDF	T.	0.000019 Y	ND(0.0000030)	NS	0.00079 Y
TCDFs (total)		0.00023	ND(0.0000030)	NS	0.0121
1,2,3,7,8-PeCDF		0.000057 J	ND(0.0000030)	NS NS	0.00042
2,3,4,7,8-PeCDF		0.000018	ND(0.0000048)	NS	0.00042
PeCDFs (total)		0.00021	0.0000030	NS	0.019
1,2,3,4,7,8-HxCDF		0.000017	ND(0.0000024) X	NS	0.0078 EJ
1,2,3,6,7,8-HxCDF		0.0000093 J	ND(0.0000020) X	NS	0.0032 EIJ
1,2,3,7,8,9-HxCDF		0.0000038 J	ND(0.000050)	NS	0.0018
2,3,4,6,7,8-HxCDF		0.000016	ND(0.0000048)	NS	0.0022
HxCDFs (total)		0.00025	0.0000078	NS	0.034 I
1,2,3,4,6,7,8-HpCDF		0.000024	ND(0.0000021)	NS	0.0030 EJ
1,2,3,4,7,8,9-HpCDF		0.0000048 J	ND(0.0000048)	NS	0.0019
HpCDFs (total)		0.000070	ND(0.0000021)	NS	0.0093
OCDF		0.000024	ND(0.0000095)	NS	0.0028
Dioxins	L				0.002
2,3,7,8-TCDD		ND(0.0000011) X	ND(0.0000025)	NS	0.000016
TCDDs (total)		0.0000012	ND(0.0000072)	NS	0.00027
1,2,3,7,8-PeCDD		ND(0.00000065) X	ND(0.0000048)	NS	ND(0.000023) X
PeCDDs (total)		0.0000026	ND(0.0000070)	NS	0.00022
1,2,3,4,7,8-HxCDD		0.00000074 J	ND(0.0000048)	NS	0.000030
1,2,3,6,7,8-HxCDD		0.0000012 J	ND(0.0000048)	NS	0.000047
1,2,3,7,8,9-HxCDD		0.0000012 J	ND(0.0000048)	NS	0.000040
HxCDDs (total)		0.000010	ND(0.0000095)	NS	0.00066
1,2,3,4,6,7,8-HpCDD		0.000014	ND(0.0000049)	NS	0.00050
HpCDDs (total)		0.000033	ND(0.0000049)	NS	0.0011
OCDD		0.00012	ND(0.000018)	NS	0.0028
Total TEQs (WHO TEFs)		0.000017	0.0000066	NS	0.0028
Inorganics					0.0020
Antimony		ND(6.00)	ND(6.00)	NS	ND(6.00)
Arsenic		4.10	2.80	NS	11.0
Barium		120	45.0	NS	91.0
Beryllium		0.580	ND(0.500)	NS	0.580
Cadmium		0.880	0.570	NS	3.00
Chromium		29.0	12.0	NS	31.0
Cobalt	<u> </u>	11.0	9.20	NS	14.0
Copper		37.0	18.0	NS	130
Cyanide		0.460	ND(0.220)	NS	0.710
Lead		34.0	7.50	NS	550
Mercury		0.450	ND(0.220)	NS	1.10
Nickel		19.0	14.0	NS	33.0
Selenium		ND(2.00) J	ND(1.70) J	NS	ND(0.920) J
Silver		ND(2.00)	ND(1.70)	NS	ND(1.30)
Sulfide		150	75.0	NS	51.0
Thallium		ND(4.10) J	ND(3.40) J	NS	ND(2.60) J
Tin		10.0 B	8.50 B	NS	66.0
Vanadium		17.0	10.0	NS	39.0
Zinc		130 J	80.0 J	NS	790 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID: Sample Depth(Feet):	RAA13-B87 1-3	RAA13-B87 3-6	RAA13-B87 4-6	RAA13-B90 0-1	RAA13-B90 1-3
Parameter Date Collected:	10/24/02	10/24/02	10/24/02	10/01/02	10/01/02
Volatile Organics			****		
1,2-Dibromo-3-chloropropane	ND(0.0090)	NS	ND(0.0074)	ND(0.0085)	ND(0.0080)
Acetone	ND(0.036)	NS	ND(0.030)	ND(0.034) J	ND(0.032) J
Benzene	ND(0.0090)	NS	ND(0.0074)	ND(0.0085)	ND(0.0080)
Chlorobenzene	ND(0.0090)	NS	0.072	ND(0.0085)	ND(0.0080)
Tetrachloroethene	ND(0.0090)	NS	ND(0.0074)	ND(0.0085)	ND(0.0080)
Toluene	ND(0.0090)	NS	ND(0.0074)	ND(0.0085)	ND(0.0080)
Trichloroethene	0.0081 J	NS	ND(0.0074)	ND(0.0085)	0.080
Semivolatile Organics					
1,2,4-Trichlorobenzene	ND(0.60)	ND(0.49)	NS	0.14 J	20
1,2-Dichlorobenzene	ND(0.60)	ND(0.49)	NS	ND(0.57)	0.14 J
1,3-Dichlorobenzene	ND(0.60)	ND(0.49)	NS	ND(0.57)	0.18 J
1,4-Dichlorobenzene	0.17 J	ND(0.49)	NS	ND(0.57)	0.46 J
2,4-Dimethylphenol	ND(0.60)	ND(0.49)	NS	ND(0.57)	0.77
2,4-Dinitrotoluene	ND(0.60)	ND(0.49)	NS	ND(0.57)	ND(0.53)
2-Chloronaphthalene	ND(0.60)	ND(0.49)	NS	ND(0.57)	ND(0.53)
2-Chlorophenol	ND(0.60)	ND(0.49)	NS	ND(0.57)	ND(0.53)
2-Methylnaphthalene	ND(0.60)	ND(0.49)	NS	ND(0.57)	ND(0.53)
2-Methylphenol	ND(0.60)	ND(0.49)	NS	ND(0.57)	0.41 J
3&4-Methylphenol	ND(1.2)	ND(0.99)	NS	0.19 J	1.6
3,3'-Dichlorobenzidine	ND(1.2)	ND(0.99)	NS	ND(1.1)	ND(1.1)
4-Chloro-3-Methylphenol	ND(0.60)	ND(0.49)	NS	ND(0.57)	ND(0.53)
4-Chloroaniline	ND(0.60)	ND(0.49)	NS	ND(0.57)	ND(0.53)
4-Nitrophenol	ND(3.1)	ND(2.5)	NS	ND(2.9)	ND(2.7)
Acenaphthene	ND(0.60)	0.80	NS	0.14 J	ND(0.53)
Acenaphthylene	ND(0.60)	ND(0.49)	NS	ND(0.57)	ND(0.53)
Aniline	ND(0.60)	ND(0.49)	NS	0.29 J	2.1
Anthracene	ND(0.60)	ND(0.49)	NS	ND(0.57)	ND(0.53)
Benzo(a)anthracene	ND(0.60)	ND(0.49)	NS	0.19 J	0.46 J
Benzo(a)pyrene	ND(0.60)	ND(0.49)	NS	0.12 J	0.58
Benzo(b)fluoranthene	ND(0.60)	ND(0.49)	NS	0.23 J	0.89
Benzo(g,h,i)perylene	ND(0.60)	ND(0.49)	NS	0.12 J	0.42 J
Benzo(k)fluoranthene	ND(0.60)	ND(0.49)	NS	0.13 J	0.34 J
bis(2-Ethylhexyl)phthalate	ND(0.60)	ND(0.49)	NS	ND(0.56)	ND(0.52)
Chrysene	ND(0.60)	0.10 J	NS	0.24 J	0.61
Dibenzo(a,h)anthracene	ND(0.60)	ND(0.49)	NS	ND(0.57)	0.12 J
Dibenzofuran	ND(0.60)	ND(0.49)	NS	ND(0.57)	ND(0.53)
Di-n-Butylphthalate	ND(0.60)	ND(0.49)	NS	ND(0.57)	ND(0.53)
Fluoranthene	ND(0.60)	0.11 J	NS	0.33 J	0.62
Fluorene	ND(0.60)	0.16 J	NS	ND(0.57)	ND(0.53)
Indeno(1,2,3-cd)pyrene	ND(0.60)	ND(0.49)	NS	ND(0.57)	0.34 J
Naphthalene	ND(0.60)	ND(0.49)	NS	ND(0.57)	0.17 J
N-Nitroso-di-n-propylamine	ND(0.60)	ND(0.49)	NS	ND(0.57)	ND(0.53)
Pentachlorophenol	ND(3.1)	ND(2.5)	NS	ND(2.9)	ND(2.7)
Phenanthrene	ND(0.60)	ND(0.49)	NS	0.16 J	0.31 J
Phenol	ND(0.60)	ND(0.49)	NS	0.71	2.0
Pronamide	ND(0.60)	ND(0.49)	NS	ND(0.57)	ND(0.53)
Pyrene	ND(0.60)	0.21 J	NS	0.30 J	0.71

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample/Location ID: Sample Depth(Feet):	RAA13-B87 1-3	RAA13-B87 3-6	RAA13-B87 4-6	RAA13-B90 0-1	RAA13-B90 1-3
Parameter	Date Collected:	10/24/02	10/24/02	10/24/02	10/01/02	10/01/02
Furans					•	
2,3,7,8-TCDF		0.00056 Y	0.00038 Y	NS	0.00042 Y	0.035 YI
TCDFs (total)		0.00751	0.0042	NS	0.00271	0.36 1
1,2,3,7,8-PeCDF		0.00066	0.00056	NS	0.00020	0.025
2,3,4,7,8-PeCDF		0.0038 EJ	0.0029	NS	0.00023	0.043
PeCDFs (total)		0.022	0.016	NS	0.0024 I	0.37 1
1,2,3,4,7,8-HxCDF		0.015 EJ	0.011	NS	0.00035	0.068
1,2,3,6,7,8-HxCDF		0.0060 EIJ	0.0047	NS	0.00021	0.0411
1,2,3,7,8,9-HxCDF		0.0038 EJ	0.0030	NS	0.000053	0.0077
2,3,4,6,7,8-HxCDF		0.0031 EJ	0.0026	NS .	0.00015	0.022
HxCDFs (total)		0.044 I	0.033	NS	0.00221	0.32
1,2,3,4,6,7,8-HpCDF		0.0038 EJ	0.0029	NS	0.00033	0.070
1,2,3,4,7,8,9-HpCDF		0.0038 EJ	0.0027	NS	0.000088	0.012
HpCDFs (total)		0.012	0.0085	NS	0.00074	0.10
OCDF		0.0034	0.0023	NS	0.00036	0.074
Dioxins						
2,3,7,8-TCDD		0.0000017 J	ND(0.0000020) X	NS	0.000019	0.00026
TCDDs (total)		0.00036	0.00022	NS	0.000045	0.011
1,2,3,7,8-PeCDD		ND(0.000022)	ND(0.000022) X	NS	ND(0.0000072) X	0.0013
PeCDDs (total)		0.00042	0.00047	NS	0.000069	0.021
1,2,3,4,7,8-HxCDD		0.000013	0.000012 J	NS	0.0000048 J	0.0014
1,2,3,6,7,8-HxCDD		0.000030	0.000026 J	NS	0.0000082	0.0024
1,2,3,7,8,9-HxCDD		ND(0.000022) X	0.000015 J	NS	0.0000070	0.0016
HxCDDs (total)		0.00050	0.00032	NS	0.00018	0.031
1,2,3,4,6,7,8-HpCDD		0.000065	0.000056	NS	0.00012	0.011
HpCDDs (total)		0.00014	0.00011	NS	0.00065	0.024
OCDD		0.00016	0.00015	NS	0.0013	0.019
Total TEQs (WHO TE	Fs)	0.0049	0.0037	NS	0.00027	0.043
Inorganics						
Antimony		ND(6.00)	ND(6.00)	NS	1.60 B	47.0
Arsenic		3.30	1.20	NS	5.20 J	20.0 J
Barium		60.0	24.0	NS	930	820
Beryllium		ND(0.500)	0.170 B	NS	ND(0.500)	ND(0.500)
Cadmium		ND(0.500)	0.220 B	NS	ND(0.500)	160
Chromium		23.0	6.50	NS	7.60	350
Cobalt		7.60	5.10	NS	1.20 B	23.0
Copper		23.0	11.0	NS	380	9600
Cyanide		0.250	ND(0.150)	NS	ND(0.340)	0.580
Lead		23.0	4.40	NS	100	5100
Mercury		0.180 B	0.0460 B	NS	ND(0.170)	2.10
Nickel		12.0	8.30	NS	9.00	190
Selenium		ND(1.40) J	ND(1.10) J	NS	ND(1.30) J	ND(1.20) J
Silver		ND(1.40)	ND(1.10)	NS	ND(1.30)	83.0
Sulfide		53.0	190	NS	49 J	69 J
Thallium		ND(2.70) J	ND(2.20) J	NS	ND(2.60) J	3.00 J
Tin		ND(14.0)	4.80 B	NS	21.0	370
Vanadium		11.0	5.70	NS	11.0	39.0
Zinc		81.0 J	45.0 J	NS	100	9800

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample/Location ID:	RAA13-B96	RAA13-B97	RAA13-B97	RAA13-B99	RAA13-C3
	Sample Depth(Feet):	0-1	3-6	4-6	1-3	0-1
Parameter	Date Collected:	09/26/02	10/09/02	10/09/02	10/09/02	09/26/02
Volatile Organic	S					
1,2-Dibromo-3-ch	nloropropane	ND(0.0052)	NS	ND(0.0064)	ND(0.0065) J	ND(0.0053)
Acetone		ND(0.021)	NS	ND(0.025)	ND(0.026) J	ND(0.021)
Benzene		ND(0.0052)	NS	ND(0.0064)	ND(0.0065) J	ND(0.0053)
Chlorobenzene		ND(0.0052)	NS	ND(0.0064)	ND(0.0065) J	ND(0.0053)
Tetrachloroethen	e	ND(0.0052)	NS	ND(0.0064)	ND(0.0065) J	ND(0.0053)
Toluene		ND(0.0052)	NS	ND(0.0064)	ND(0.0065) J	ND(0.0053)
Trichloroethene		ND(0.0052)	NS	ND(0.0064)	ND(0.0065) J	ND(0.0053)
Semivolatile Org	ganics					
1,2,4-Trichlorobe	nzene	ND(0.45)	ND(0.55)	NS	R	ND(0.95)
1,2-Dichlorobenz	ene	ND(0.45)	ND(0.55)	NS	ND(0.44)	ND(0.95)
1.3-Dichlorobenz	····	ND(0.45)	ND(0.55)	NS	ND(0.44)	ND(0.95)
1.4-Dichlorobenz		ND(0.45)	ND(0.55)	NS	ND(0.44)	ND(0.95)
2,4-Dimethylpher		ND(0.45)	ND(0.55)	NS	ND(0.44)	ND(0.95)
2,4-Dinitrotoluene		ND(0.45)	ND(0.55)	NS	ND(0.44)	ND(0.95)
2-Chloronaphthal		ND(0.45)	ND(0.55)	NS	ND(0.44)	ND(0.95)
2-Chlorophenol		ND(0.45)	ND(0.55)	NS	ND(0.44)	ND(0.95)
2-Methylnaphthal	lene	ND(0.45)	ND(0.55)	NS	ND(0.44)	ND(0.95)
2-Methylphenol	<u> </u>	ND(0.45)	ND(0.55)	NS	ND(0.44)	ND(0.95)
3&4-Methylpheno	7	ND(0.70)	ND(0.85)	NS	ND(0.87)	ND(0.95)
3,3'-Dichlorobenz		ND(0.90) J	ND(1.1)	NS	ND(0.87)	ND(1.9) J
4-Chloro-3-Methy		ND(0.45)	ND(0.55)	NS	ND(0.44)	ND(0.95)
4-Chloroaniline	, prioriei	ND(0.45)	ND(0.55)	NS	ND(0.44)	ND(0.95)
4-Nitrophenol		ND(2.2)	ND(2.8) J	NS NS	ND(2.2) J	ND(4.8)
Acenaphthene		ND(0.45)	ND(0.55)	NS NS	R R	ND(0.95)
Acenaphthylene		ND(0.45)	ND(0.55)	NS NS	0.31 J	ND(0.95)
Aniline		0.71	ND(0.55)	NS NS	1.5	ND(0.95)
Anthracene		ND(0.45)	ND(0.55)	NS NS	0.11 J	ND(0.95)
Benzo(a)anthrace	ene	ND(0.45)	ND(0.55)	NS NS	0.39 J	0.32 J
Benzo(a)pyrene	JIIC	ND(0.45)	ND(0.55)	NS NS	0.45	0.32 J
Benzo(b)fluoranth	hene	ND(0.45)	ND(0.55)	NS NS	0.47	0.28 J
Benzo(g,h,i)peryl		ND(0.45)	ND(0.55)	NS NS	0.38 J	0.20 J
Benzo(k)fluoranth		ND(0.45)	ND(0.55)	NS NS	0.20 J	ND(0.95)
bis(2-Ethylhexyl)		ND(0.34)	ND(0.42)	NS NS	ND(0.43)	ND(0.48)
Chrysene	munane	ND(0.45)	ND(0.55)	NS	0.33 J	0.24 J
Dibenzo(a,h)anth	racene	ND(0.45)	ND(0.55)	NS NS	ND(0.44)	ND(0.95)
Dibenzofuran	nacene	ND(0.45)	ND(0.55)	NS	ND(0.44)	ND(0.95)
Di-n-Butylphthala	ote .	ND(0.45)	ND(0.55)	NS	ND(0.44)	ND(0.95)
Fluoranthene	110	0.099 J	ND(0.55)	NS NS	0.48	0.33 J
Fluorene		ND(0.45)	ND(0.55)	NS NS	ND(0.44)	ND(0.95)
Indeno(1,2,3-cd);	DVECTO	ND(0.45)	ND(0.55)	NS NS	0.28 J	ND(0.95)
Naphthalene	Jy16116	ND(0.45)	ND(0.55)	NS NS	0.26 J	ND(0.95) ND(0.95)
N-Nitroso-di-n-pro	onvlamine	ND(0.45)	ND(0.55)	NS NS	R R	ND(0.95) ND(0.95)
Pentachiorophen		ND(2.2)	ND(0.55)	NS NS	ND(2.2)	
	<u> </u>			NS NS		ND(4.8)
Phenanthrene		ND(0.45)	ND(0.55)		0.26 J	0.20 J
Phenol		ND(0.45)	ND(0.55)	NS NS	0.23 J	ND(0.95)
Pronamide		ND(0.45)	ND(0.55)	NS NS	ND(0.44)	ND(0.95)
Pyrene		0.12 J	ND(0.55)	NS	0.62 J	0.34 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:	RAA13-B96	RAA13-B97	RAA13-B97	RAA13-B99	RAA13-C3
Sample Depth(Feet):	0-1	3-6	4-6	1-3	0-1
Parameter Date Collected:	09/26/02	10/09/02	10/09/02	10/09/02	09/26/02
Furans					
2,3,7,8-TCDF	0.00014 Y	ND(0.00000024) X	NS	0.00059 J	0.00061 Y
TCDFs (total)	0.0010	0.00000082	NS	0.0027 QI	0.00431
1,2,3,7,8-PeCDF	0.000057	ND(0.00000013) X	NS	0.00012 J	0.00050
2,3,4,7,8-PeCDF	0.000097	0.00000018 J	NS	0.00059 J	0.00058
PeCDFs (total)	0.00086 QI	0.00000062	NS	0.0031 QI	0.0050 QI
1,2,3,4,7,8-HxCDF	0.00016	ND(0.00000022) X	NS	0.00034 J	0.0011
1,2,3,6,7,8-HxCDF	0.000084	ND(0.00000018) X	NS	0.00026 J	0.00059
1,2,3,7,8,9-HxCDF	0.000020	ND(0.00000027)	NS	0.000083	0.00013
2,3,4,6,7,8-HxCDF	0.000082	ND(0.00000017) X	NS	0.00021 J	0.00027
HxCDFs (total)	0.0010 I	0.00000064	NS	0.0033	0.0042
1,2,3,4,6,7,8-HpCDF	0.00020	0.00000071 J	NS	0.00032 J	0.0010
1,2,3,4,7,8,9-HpCDF	0.000035	ND(0.00000027)	NS	0.00034 YI J	0.00021
HpCDFs (total)	0.00036	0.0000030	NS	0.0011	0.0015
OCDF	0.00013	0.0000034 J	NS	0.00031 J	0.00088
Dioxins					
2,3,7,8-TCDD	0.00000098 J	ND(0.00000011)	NS	0.0000034	0.0000027
TCDDs (total)	0.000030	ND(0.00000015)	NS	0.000067	0.000098
1,2,3,7,8-PeCDD	0.0000040 J	ND(0.00000027)	NS	ND(0.0000097) X	0.000011
PeCDDs (total)	0.000050 Q	ND(0.00000027)	NS	0.00010 Q	0.00017 Q
1,2,3,4,7,8-HxCDD	0.0000040 J	ND(0.00000033)	NS	0.0000075	0.000012
1,2,3,6,7,8-HxCDD	0.0000074	ND(0.0000030)	NS	0.000018	0.000022
1,2,3,7,8,9-HxCDD	0.0000058	ND(0.0000030)	NS	0.000015	0.000016
HxCDDs (total)	0.000096	0.00000026	NS	0.00021	0.00028
1,2,3,4,6,7,8-HpCDD	0.000042	0.0000051	NS	0.00010	0.00012
HpCDDs (total)	0.000087	0.0000098	NS	0.00021	0.00025
OCDD	0.000076	0.000049	NS	0.00048 J	0.00020
Total TEQs (WHO TEFs)	0.00011	0.00000045	NS	0.00047	0.00062
Inorganics	·	·			L
Antimony	1.30 B	ND(6.00)	NS	ND(6.00)	ND(6.00)
Arsenic	9.00	4.8 J	NS	5.1 J	9.30
Barium	27.0 J	24.0	NS	64.0	120 J
Beryllium	ND(0.500)	ND(0.500)	NS	ND(0.500)	ND(0.500)
Cadmium	ND(0.500)	ND(0.500)	NS	1.10	1.60
Chromium	9.80	8.40	NS	15.0	33.0
Cobalt	12.0	9.10	NS	7.90	11.0
Copper	100	12.0	NS	180	1100
Cyanide	ND(0.100)	ND(0.130)	NS	0.440	ND(0.210)
Lead	95.0 J	6.40	NS	220	800 J
Mercury	0.110	ND(0.130)	NS	0.320	0.300
Nickel	18.0	14.0	NS	16.0	33.0
Selenium	ND(1.00)	ND(1.00)	NS	ND(1.00)	ND(1.00)
Silver	ND(1.00)	ND(1.00) J	NS	ND(1.00) J	0.320 B
Sulfide	30.0	18.0	NS	31.0	17.0
Thallium	ND(1.60) J	ND(1.90)	NS	ND(2.00)	ND(1.60) J
Tin	11.0	4.60 B	NS	24.0	72.0
Vanadium	6.20	8.60	NS	11.0	9.20
Zinc	140	48 J	NS	260 J	780

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:	RAA13-C5	RAA13-C5	RAA13-C85	RAA13-C85
Sample Depth(Feet):	0-1	1-3	0-1	1-3
Parameter Date Collected:	09/26/02	09/26/02	10/25/02	10/25/02
Volatile Organics				1/5/2/2/2/2
1,2-Dibromo-3-chloropropane	ND(0.0060)	ND(0.0059) J	ND(0.0074)	ND(0.0074)
Acetone	ND(0.024)	0.017 J	0.017 J	ND(0.030)
Benzene	ND(0.0060)	ND(0.0059) J	ND(0.0074)	ND(0.0074)
Chlorobenzene	ND(0.0060)	ND(0.0059) J	ND(0.0074)	ND(0.0074)
Tetrachloroethene	ND(0.0060)	ND(0.0059) J	ND(0.0074)	ND(0.0074)
Toluene	ND(0.0060)	ND(0.0059) J	ND(0.0074)	ND(0.0074)
Trichloroethene	ND(0.0060)	ND(0.0059) J	ND(0.0074)	ND(0.0074)
Semivolatile Organics				
1,2,4-Trichlorobenzene	1.0	0.56	ND(0.49)	ND(0.49)
1,2-Dichlorobenzene	ND(0.40)	ND(0.40)	ND(0.49)	ND(0.49)
1,3-Dichlorobenzene	ND(0.40)	ND(0.40)	ND(0.49)	ND(0.49)
1,4-Dichlorobenzene	0.085 J	ND(0.40)	ND(0.49)	ND(0.49)
2,4-Dimethylphenol	0.75	0.19 J	ND(0.49)	ND(0.49)
2,4-Dinitrotoluene	ND(0.40)	ND(0.40)	ND(0.49)	ND(0.49)
2-Chloronaphthalene	ND(0.40)	ND(0.40)	ND(0.49)	ND(0.49)
2-Chlorophenol	ND(0.40)	ND(0.40)	ND(0.49)	ND(0.49)
2-Methylnaphthalene	0.18 J	0.14 J	ND(0.49)	ND(0.49)
2-Methylphenol	0.31 J	0.099 J	ND(0.49)	ND(0.49)
3&4-Methylphenol	0.91	0.25 J	ND(0.99)	ND(0.99)
3,3'-Dichlorobenzidine	ND(0.80) J	ND(0.80) J	ND(0.99)	ND(0:99)
4-Chloro-3-Methylphenol	ND(0.40)	ND(0.40)	ND(0.49)	ND(0.49)
4-Chloroaniline	ND(0.40)	ND(0.40)	ND(0.49)	ND(0.49)
4-Nitrophenol	ND(2.0)	ND(2.0)	ND(2.5)	ND(2.5)
Acenaphthene	0.35 J	0.14 J	ND(0.49)	ND(0.49)
Acenaphthylene	0.12 J	ND(0.40)	ND(0.49)	ND(0.49)
Aniline	1.6	0.27 J	0.39 J	ND(0.49)
Anthracene	1.2	0.46	ND(0.49)	ND(0.49)
Benzo(a)anthracene	4.8	ND(0.40)	0.21 J	ND(0.49)
Benzo(a)pyrene	3.7	0.93	0.18 J	ND(0.49)
Benzo(b)fluoranthene	4.9	1.5	0.26 J	ND(0.49)
Benzo(g,h,i)perylene	2.4	0.48	0.26 J	ND(0.49)
Benzo(g,n,n)peryiene Benzo(k)fluoranthene	1.7	0.50	0.14 J	ND(0.49)
	ND(0.39)	ND(0.39)	ND(0.49)	ND(0.49)
bis(2-Ethylhexyl)phthalate	4.0	ND(0.40)	0.28 J	ND(0.49)
Chrysene	0.68	0.19 J	ND(0.49)	ND(0.49)
Dibenzo(a,h)anthracene		0.19 J	ND(0.49)	ND(0.49)
Dibenzofuran	0.27 J		ND(0.49) ND(0.49)	ND(0.49) ND(0.49)
Di-n-Butylphthalate	ND(0.40)	ND(0.40)		
Fluoranthene	7.8	2.9	0.48 J	ND(0.49)
Fluorene	0.43	0.22 J	ND(0.49)	ND(0.49)
Indeno(1,2,3-cd)pyrene	2.1	0.45	0.11 J	ND(0.49)
Naphthalene	0.37 J	0.28 J	ND(0.49)	ND(0.49)
N-Nitroso-di-n-propylamine	ND(0.40)	ND(0.40)	ND(0.49)	ND(0.49)
Pentachlorophenol	ND(2.0)	ND(2.0)	ND(2.5)	ND(2.5)
Phenanthrene	4.4	1.8	0.24 J	ND(0.49)
Phenol	0.98	0.25 J	ND(0.49)	ND(0.49)
Pronamide	ND(0.40)	ND(0.40)	ND(0.49)	ND(0.49)
Pyrene	7.4	2.6	0.61	ND(0.49)

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample/Location ID:	RAA13-C5	RAA13-C5	RAA13-C85	RAA13-C85
	Sample Depth(Feet):	0-1	1-3	0-1	1-3
Parameter	Date Collected:	09/26/02	09/26/02	10/25/02	10/25/02
Furans				7	y
2,3,7,8-TCDF		0.0090 YEJ	0.0046 YEJ	0.000063 Y	0.000016 Y
TCDFs (total)		0.067	0.028 Q	0.00045	0.00015
1,2,3,7,8-PeCDF		0.010 EIJ	0.0032 EJ	0.000025	0.0000058 J
2,3,4,7,8-PeCDF		0.0087 EIJ	0.0038 EJ	0.000026	0.0000061
PeCDFs (total)		0.078 QI	0.032 IQ	0.00027	0.000067
1,2,3,4,7,8-HxCDF		0.017 EIJ	0.0067 EIJ	0.000030	0.0000062
1,2,3,6,7,8-HxCDF		0.0099 EIJ	0.0034 EIJ	0.000018	0.0000035 J
1,2,3,7,8,9-HxCDF		0.0027 J	0.00082	0.0000034 J	0.00000078 J
2,3,4,6,7,8-HxCDF		0.0040 J	0.0016	0.000012	0.0000026 J
HxCDFs (total)		0.066 I	0.025 I	0.00019	0.000038
1,2,3,4,6,7,8-HpCDF		0.014 EIJ	0.0058 EJ	0.000048	0.0000079
1,2,3,4,7,8,9-HpCDF		0.0032 J	0.0013	0.0000065	0.0000011 J
HpCDFs (total)		0.021 I	0.0088 I	0.000086	0.000013
OCDF		0.011 J	0.0069 EJ	0.000046	0.0000086 J
Dioxins					
2,3,7,8-TCDD		0.000050 J	0.000050	ND(0.00000078) X	ND(0.00000040) X
TCDDs (total)		0.0013	0.00066	0.000011	0.0000052
1,2,3,7,8-PeCDD		0.00016 J	0.00016	ND(0.0000012) X	ND(0.00000027) X
PeCDDs (total)		0.0021 Q	0.0014 Q	0.000013	0.0000036
1,2,3,4,7,8-HxCDD		0.00015 J	0.00012	0.00000072 J	ND(0.00000028) X
1,2,3,6,7,8-HxCDD		0.00025 J	0.00021	0.0000020 J	ND(0.00000042) X
1,2,3,7,8,9-HxCDD		0.00020 J	0.00017	0.0000018 J	0.00000038 J
HxCDDs (total)		0.0033	0.0024	0.000025	0.0000030
1,2,3,4,6,7,8-HpCDD		0.0012 J	0.00078	0.000016	0.0000026 J
HpCDDs (total)		0.0025	0.0015	0.000034	0.0000055
OCDD		0.0021 J	0.0010	0.00017	0.000020
Total TEQs (WHO TE	Fs)	0.0096	0.0041	0.000029	0.0000068
Inorganics		***************************************			1
Antimony		26.0	51.0	ND(6.00)	ND(6.00)
Arsenic		27.0	38.0	9.80	15.0
Barium		1100 J	1000 J	84.0	120
Beryllium		ND(0.500)	ND(0.500)	0.550	1.10
Cadmium		17.0	19.0	1.10	1.20
Chromium		200	200	24.0 J	19.0 J
Cobalt		17.0	21.0	10.0	22.0
Copper		6900	9600	47.0 J	48.0 J
Cyanide		0.560	1.80	0.130 B	ND(0.150)
Lead .		8300 J	10000 J	97.0	26.0
Mercury		3.10	2.00	0.620	0.0650 B
Nickel		150	220	18.0 J	38.0 J
Selenium		ND(1.00)	ND(1.00)	1.20	ND(1.10)
Silver		4.50	ND(1.00)	0.910 B	ND(1.10)
Sulfide		170	51.0	26.0 J	24.0 J
Thallium		6.10 J	7.90 J	ND(2.20)	1.70 B
Tin		460	1000	ND(11.0)	5.10 B
Vanadium		19.0	28.0	15.0 J	19.0 J
Zinc		7600	11000	130 J	120 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID: Sample Depth(Feet):	RAA13-C85 6-10	RAA13-C85 8-10	RAA13-C87 0-1	RAA13-C87 3-6
Parameter Date Collected:	10/25/02	10/25/02	10/24/02	10/24/02
Volatile Organics				
1,2-Dibromo-3-chloropropane	NS	ND(0.0062)	ND(0.0065)	l NS
Acetone	NS	ND(0.025)	ND(0.026)	NS
Benzene	NS NS	ND(0.0062)	ND(0.0065)	NS
Chlorobenzene	NS	ND(0.0062)	ND(0.0065)	NS
Tetrachloroethene	NS	ND(0.0062)	ND(0.0065)	NS
Toluene	NS	ND(0.0062)	ND(0.0065)	NS
Trichloroethene	NS	ND(0.0062)	ND(0.0065)	NS
Semivolatile Organics		1 (5.0502)	7.00(0.0000)	
1,2,4-Trichlorobenzene	ND(0.42)	NS I	ND(0.44)	ND(0.50)
1,2-Dichlorobenzene	ND(0.42)	NS NS	ND(0.44)	ND(0.50)
1,3-Dichlorobenzene	ND(0.42)	NS NS	ND(0.44)	ND(0.50)
1,4-Dichlorobenzene	ND(0.42)	NS NS	ND(0.44)	ND(0.50)
2,4-Dimethylphenol	ND(0.42)	NS	ND(0.44)	ND(0.50)
2,4-Dinitrotoluene	ND(0.42)	NS NS	ND(0.44)	ND(0.50)
2-Chloronaphthalene	ND(0.42)	NS NS	ND(0.44)	ND(0.50)
2-Chlorophenol	ND(0.42)	NS NS	ND(0.44)	ND(0.50)
2-Methylnaphthalene	ND(0.42)	NS NS	0.41 J	1.4
2-Methylphenol	ND(0.42)	NS NS	ND(0.44)	ND(0.50)
3&4-Methylphenol	ND(0.84)	NS NS	ND(0.88)	ND(0.91)
3,3'-Dichlorobenzidine	ND(0.84)	NS NS	ND(0.88)	ND(1.0)
4-Chloro-3-Methylphenol	ND(0.42)	NS NS	ND(0.44)	ND(0.50)
4-Chloroaniline	ND(0.42)	NS NS	ND(0.44)	ND(0.50)
4-Nitrophenol	ND(2.1)	NS NS	ND(2.2)	ND(0.50)
Acenaphthene	ND(0.42)	NS NS	1.1	4.1
Acenaphthylene	ND(0.42)	NS NS	ND(0.44)	2.9
Aniline	ND(0.42)	NS NS	ND(0.44)	ND(0.50)
Anthracene	ND(0.42)	NS NS	1.6	6.4
Benzo(a)anthracene	ND(0.42)	NS NS	2.2	7.7
Benzo(a)pyrene	ND(0.42)	NS NS	1.5	5.6
Benzo(b)fluoranthene	ND(0.42)	NS NS	1.8	6.0
Benzo(g,h,i)perylene	ND(0.42)	NS NS	0.86	2.9
Benzo(k)fluoranthene	ND(0.42)	NS NS	0.77	2.8
bis(2-Ethylhexyl)phthalate	ND(0.41)	NS	ND(0.43)	ND(0.45)
Chrysene	ND(0.42)	NS	1.6	5.4
Dibenzo(a,h)anthracene	ND(0.42)	NS	ND(0.44)	0.66
Dibenzofuran	ND(0.42)	NS NS	0.45	1.6
Di-n-Butylphthalate	ND(0.42)	NS NS	ND(0.44)	ND(0.50)
Fluoranthene	ND(0.42)	NS I	4.6	16
Fluorene	ND(0.42)	NS NS	0.85	3.1
Indeno(1,2,3-cd)pyrene	ND(0.42)	NS	0.66	2.5
Naphthalene	ND(0.42)	NS	1.4	4.3
N-Nitroso-di-n-propylamine	ND(0.42)	NS	ND(0.44)	ND(0.50)
Pentachlorophenol	ND(2.1)	NS NS	ND(2.2)	ND(2.5)
Phenanthrene	ND(0.42)	NS NS	4.6	16
Phenol	ND(0.42)	NS NS	ND(0.44)	ND(0.50)
Pronamide	ND(0.42)	NS NS	ND(0.44)	ND(0.50)
Pyrene	ND(0.42)	NS NS	4.3	15

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID: Sample Depth(Feet):	RAA13-C85 6-10	RAA13-C85 8-10	RAA13-C87 0-1	RAA13-C87 3-6
Parameter Date Collected:	10/25/02	10/25/02	10/24/02	10/24/02
Furans				
2,3,7,8-TCDF	ND(0.00000020)	NS	0.000054 Y	0.000016 Y
TCDFs (total)	0.000000089	NS	0.000561	0.00019
1,2,3,7,8-PeCDF	ND(0.00000013) X	NS	0.000017 J	0.000010 J
2,3,4,7,8-PeCDF	0.00000017 J	NS	0.000086	0.000032
PeCDFs (total)	0.00000028	NS	0.0014 I	0.00046
1,2,3,4,7,8-HxCDF	0.00000013 J	NS	0.000095	0.000037
1,2,3,6,7,8-HxCDF	ND(0.000000097) X	NS	0.000061	0.000023
1,2,3,7,8,9-HxCDF	ND(0.00000051)	NS	ND(0.000021) X	0.0000086 J
2,3,4,6,7,8-HxCDF	ND(0.00000051)	NS	0.00012	0.000044
HxCDFs (total)	0.00000013	NS	0.0020	0.00076
1,2,3,4,6,7,8-HpCDF	0.00000025 J	NS	0.00017	0.000059
1,2,3,4,7,8,9-HpCDF	ND(0.00000051)	NS	0.000027	0.0000076 J
HpCDFs (total)	0.00000025	NS	0.00057	0.00018
OCDF	0.00000049 J	NS	0.000086	0.000030 J
Dioxins				
2,3,7,8-TCDD	ND(0.00000020)	NS	ND(0.0000011)	ND(0.0000013)
TCDDs (total)	ND(0.00000042)	NS	ND(0.0000027)	ND(0.0000024)
1,2,3,7,8-PeCDD	ND(0.00000051)	NS	ND(0.0000016) X	ND(0.0000023)
PeCDDs (total)	0.00000034	NS	ND(0.000016)	ND(0.0000046)
1,2,3,4,7,8-HxCDD	ND(0.00000051)	NS	ND(0.0000031)	ND(0.0000040)
1,2,3,6,7,8-HxCDD	ND(0.00000051)	NS	0.0000018 J	ND(0.0000031)
1,2,3,7,8,9-HxCDD	ND(0.00000051)	NS	ND(0.0000027)	ND(0.0000035)
HxCDDs (total)	ND(0.00000074)	NS	0.000012	0.0000066
1,2,3,4,6,7,8-HpCDD	0.00000046 J	NS	0.000014 J	0.0000084 J
HpCDDs (total)	0.0000079	NS	0.000028	0.000015
OCDD	0.0000026 J	NS	0.000056	0.000028 J
Total TEQs (WHO TEFs)	0.0000061	NS	0.000082	0.000032
Inorganics				
Antimony	ND(6.00)	NS	ND(6.00)	1.60 B
Arsenic	7.90	NS	9.10	12.0
Barium	ND(20.0)	NS	34.0	51.0
Beryllium	ND(0.500)	NS	ND(0.500)	ND(0.500)
Cadmium	ND(0.500)	NS	0.510	1.00
Chromium	9.60 J	NS	10.0	19.0
Cobalt	12.0	NS	11.0	17.0
Copper	34.0 J	NS	44.0	40.0
Cyanide	ND(0.120)	NS	ND(0.130)	ND(0.140)
Lead	12.0	NS	47.0	36.0
Mercury	ND(0.120)	NS	0.140	0.0910 B
Nickel	20.0 J	NS	18.0	28.0
Selenium	ND(1.00)	NS	ND(1.00) J	ND(1.00) J
Silver	ND(1.00)	NS	ND(1.00)	ND(1.00)
Sulfide	18.0 J	NS	19.0	24.0
Thallium	ND(1.90)	NS	ND(2.00) J	ND(2.00) J
Tin	3.90 B	NS	ND(10.0)	ND(10.0)
Vanadium	6.80 J	NS	8.80	19.0
Zinc	54.0 J	NS	78.0 J	98.0 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample/Location ID:	RAA13-C87	RAA13-C92	RAA13-C96
Parameter	Sample Depth(Feet): Date Collected:	4-6 10/24/02	0-1 10/01/02	0-1 09/26/02
Volatile Organics				00/20/02
1,2-Dibromo-3-chlo	propropage	ND(0.0068)	ND(0.0071)	ND(0.0052)
Acetone	3.001.0001.0	ND(0.027)	0.016 J	ND(0.0032)
Benzene		ND(0.0068)	ND(0.0071)	ND(0.021)
Chlorobenzene		ND(0.0068)	ND(0.0071)	ND(0.0052)
Tetrachloroethene		ND(0.0068)	ND(0.0071)	ND(0.0052)
Toluene		ND(0.0068)	ND(0.0071)	
Trichloroethene		ND(0.0068)	0.14	ND(0.0052) ND(0.0052)
Semivolatile Orga	nice	140(0.0000)	0.14	ND(0.0032)
1,2,4-Trichlorobenz		NC	0.00	T ND(0.05)
1,2-Dichlorobenzer		NS	0.63	ND(0.35)
1,3-Dichlorobenzer		NS	ND(0.47)	ND(0.35)
1,4-Dichlorobenzer		NS	ND(0.47)	ND(0.35)
		NS NS	ND(0.47)	ND(0.35)
2,4-Dimethylpheno	l .	NS	ND(0.47)	ND(0.35)
2,4-Dinitrotoluene		NS	ND(0.47)	ND(0.35)
2-Chloronaphthaler	ne	NS	ND(0.47)	ND(0.35)
2-Chlorophenol		NS	ND(0.47)	ND(0.35)
2-Methylnaphthaler	ne	NS	ND(0.47)	ND(0.35)
2-Methylphenol		NS	ND(0.47)	ND(0.35)
3&4-Methylphenol		NS	0.33 J	ND(0.70)
3,3'-Dichlorobenzid		NS	ND(0.95)	ND(0.70) J
4-Chloro-3-Methylp	henol	NS	ND(0.47)	ND(0.35)
4-Chloroaniline		NS ±	ND(0.47)	ND(0.35)
4-Nitrophenol		NS	ND(2.4)	ND(1.8)
Acenaphthene		NS	ND(0.47)	ND(0.35)
Acenaphthylene		NS	ND(0.47)	ND(0.35)
Aniline		NS	0.39 J	0.19 J
Anthracene		NS	0.17 J	0.16 J
Benzo(a)anthracen	e	NS	0.46 J	0.65
Benzo(a)pyrene		NS	ND(0.47)	0.50
Benzo(b)fluoranthe	ne	NS	0.50	0.57
Benzo(g,h,i)perylen	ne	NS	0.26 J	0.36
Benzo(k)fluoranthe	ne	NS	0.19 J	0.21 J
bis(2-Ethylhexyl)ph	thalate	NS	ND(0.47)	ND(0.34)
Chrysene		NS	0.59	0.40
Dibenzo(a,h)anthra	cene	NS	ND(0.47)	0.078 J
Dibenzofuran		NS	ND(0.47)	ND(0.35)
Di-n-Butylphthalate		NS	ND(0.47)	ND(0.35)
Fluoranthene		NS	0.98	1.2
Fluorene		NS	ND(0.47)	ND(0.35)
Indeno(1,2,3-cd)pyr	rene	NS	0.18 J	0.28 J
Naphthalene		NS	ND(0.47)	ND(0.35)
N-Nitroso-di-n-prop	ylamine	NS	ND(0.47)	ND(0.35)
Pentachlorophenol		NS	ND(2.4)	ND(1.8)
Phenanthrene		NS	0.73	0.66
Phenol		NS	0.70	ND(0.35)
Pronamide		NS	ND(0.47)	
Pyrene		NS NS	1.2	ND(0.35) 1.2

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location II Sample Depth(Feet		RAA13-C92 0-1	RAA13-C96 0-1
Parameter Date Collected	, ;	10/01/02	09/26/02
Furans		<u> </u>	
2,3,7,8-TCDF	NS	0.0015 Y	0.00066 Y
TCDFs (total)	NS	0.014 I	0.0047
1,2,3,7,8-PeCDF	NS	0.0012	0.00032
2.3.4.7.8-PeCDF	NS	0.0021	0.00053
PeCDFs (total)	NS	0.024 I	0.0049 Q
1,2,3,4,7,8-HxCDF	NS	0.0045	0.00064
1,2,3,6,7,8-HxCDF	NS	0.0026	0.00038
1,2,3,7,8,9-HxCDF	NS	0.00072	0.000090
2,3,4,6,7,8-HxCDF	NS	0.0016	0.00034
HxCDFs (total)	NS	0.0261	0.0041
1,2,3,4,6,7,8-HpCDF	NS	0.0035	0.00089
1,2,3,4,7,8,9-HpCDF	NS	0.00097	0.00012
HpCDFs (total)	NS	0.0070	0.0014
OCDF	NS	0.0054	0.00047
Dioxins			•
2,3,7,8-TCDD	NS NS	0.000040	0.0000044
TCDDs (total)	NS	0.00032	0.00013
1,2,3,7,8-PeCDD	NS	ND(0.00011) X	ND(0.000018) X
PeCDDs (total)	NS	0.00056	0.00024 Q
1,2,3,4,7,8-HxCDD	NS	0.000036	0.000021
1,2,3,6,7,8-HxCDD	NS	0.000094	0.000034
1,2,3,7,8,9-HxCDD	NS	0.00019	0.000027
HxCDDs (total)	NS	0.0014	0.00047
1,2,3,4,6,7,8-HpCDD	NS	0.00037	0.00019
HpCDDs (total)	NS	0.00091	0.00040
OCDD	NS	0.00080	0.00033
Total TEQs (WHO TEFs)	NS	0.0024	0.00053
Inorganics			
Antimony	NS	ND(6.00)	1.20 B
Arsenic	NS	13.0 J	8.50
Barium	NS	160	31.0 J
Beryllium	NS	ND(0.500)	0.150 B
Cadmium	NS	1.20	0.500
Chromium	NS	22.0	9.90
Cobalt	NS	12.0	10.0
Copper	NS	320	100
Cyanide	NS	ND(0.280)	ND(0.100)
Lead	NS	310	100 J
Mercury	NS	0.340	0.260
Nickel	NS	26.0	18.0
Selenium	NS	ND(1.10) J	ND(1.00)
Silver	NS	ND(1.10)	ND(1.00)
Sulfide	NS	41 J	27.0
Thallium	NS	ND(1.80) J	ND(1.60) J
Tin	NS	61.0	ND(10.0)
Vanadium	NS	14.0	6.80
Zinc	NS	300	180

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:	RAA13-C98	RAA13-D87	RAA13-D87
Sample Depth(Feet):	0-1	0-1	1-3
Parameter Date Collected:	10/09/02	10/24/02	10/24/02
Volatile Organics			
1,2-Dibromo-3-chloropropane	ND(0.0067) [ND(0.0066)]	ND(0.0070)	ND(0.0074)
Acetone	ND(0.027) [ND(0.026)]	ND(0.028)	ND(0.030)
Benzene	ND(0.0067) [ND(0.0066)]	ND(0.0070)	ND(0.0074)
Chlorobenzene	ND(0.0067) [ND(0.0066)]	ND(0.0070)	ND(0.0074)
Tetrachioroethene	ND(0.0067) [ND(0.0066)]	ND(0.0070)	ND(0.0074)
Toluene	ND(0.0067) [ND(0.0066)]	ND(0.0070)	ND(0.0074)
Trichloroethene	ND(0.0067) [ND(0.0066)]	ND(0.0070)	ND(0.0074)
Semivolatile Organics			
1,2,4-Trichlorobenzene	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
1,2-Dichlorobenzene	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
1,3-Dichlorobenzene	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
1,4-Dichlorobenzene	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
2,4-Dimethylphenol	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
2,4-Dinitrotoluene	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
2-Chloronaphthalene	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
2-Chlorophenol	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
2-Methylnaphthalene	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
2-Methylphenol	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
3&4-Methylphenol	ND(0.90) [ND(0.89)]	ND(0.94)	ND(0.99)
3,3'-Dichlorobenzidine	ND(1.1) [ND(0.89)]	ND(0.94)	ND(0.99)
4-Chloro-3-Methylphenol	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
4-Chloroaniline	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
4-Nitrophenol	ND(2.7) J [ND(2.2) J]	ND(2.4)	ND(2.5)
Acenaphthene	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
Acenaphthylene	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
Aniline	1.3 [1.3]	0.17 J	ND(0.49)
Anthracene	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
Benzo(a)anthracene	ND(0.53) [ND(0.44)]	0.20 J	ND(0.49)
Benzo(a)pyrene	ND(0.53) [ND(0.44)]	0.14 J	ND(0.49)
Benzo(b)fluoranthene	0.11 J [ND(0.44)]	0.34 J	ND(0.49)
Benzo(g,h,i)perylene	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
Benzo(k)fluoranthene	ND(0.53) [ND(0.44)]	0.11 J	ND(0.49)
bis(2-Ethylhexyl)phthalate	ND(0.44) [ND(0.44)]	ND(0.46)	ND(0.49)
Chrysene	ND(0.53) [ND(0.44)]	0.33 J	ND(0.49)
Dibenzo(a,h)anthracene	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
Dibenzofuran	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
Di-n-Butylphthalate	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
Fluoranthene	0.15 J [0.11 J]	0.80	ND(0.49)
Fluorene	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
Indeno(1,2,3-cd)pyrene	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
Naphthalene	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
N-Nitroso-di-n-propylamine	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
Pentachiorophenol	ND(2.7) [ND(2.2)]	ND(2.4)	ND(2.5)
Phenanthrene	ND(0.53) [ND(0.44)]	0.53	ND(0.49)
Phenol	0.56 [0.15 J]	ND(0.47)	ND(0.49)
Pronamide	ND(0.53) [ND(0.44)]	ND(0.47)	ND(0.49)
Pyrene	0.14 J [0.12 J]	1.1	ND(0.49)

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:	RAA13-C98	RAA13-D87	RAA13-D87
Sample Depth(Feet):	0-1	0-1	1-3
Parameter Date Collected:	10/09/02	10/24/02	10/24/02
Furans			
2,3,7,8-TCDF	0.00010 Y [0.00016 YI]	0.00034 Y	0.0000039 J
TCDFs (total)	0.00089 I [0.0013 QI]	0.0043 I	0.000043
1,2,3,7,8-PeCDF	0.00012 [0.00016]	0.00021	0.0000018 J
2,3,4,7,8-PeCDF	0.00012 [0.00017]	0.00055	0.0000083 J
PeCDFs (total)	0.0014 QI [0.0018 QI]	0.00981	0.000096
1,2,3,4,7,8-HxCDF	0.00020 [0.00027]	0.00038	0.0000050 J
1,2,3,6,7,8-HxCDF	0.00012 I [0.00016 I]	0.00029	0.0000031 J
1,2,3,7,8,9-HxCDF	0.000035 [0.000043]	0.000073	ND(0.0000055)
2,3,4,6,7,8-HxCDF	0.000090 [0.00011]	0.00073	0.0000079 J
HxCDFs (total)	0.0016 I [0.0018 I]	0.013 I	0.00012
1,2,3,4,6,7,8-HpCDF	0.00019 [0.00025]	0.00079	0.000020 J
1,2,3,4,7,8,9-HpCDF	0.000042 [0.000057]	0.000098	ND(0.0000051)
HpCDFs (total)	0.00047 [0.00056]	0.0030	0.000044
OCDF	0.00014 [0.00018]	0.00035	ND(0.0000090)
Dioxins			
2,3,7,8-TCDD	ND(0.00000080) X [ND(0.0000010) X]	0.0000031 J	ND(0.0000019)
TCDDs (total)	0.000015 [0.000024 Q]	0.000028	ND(0.0000029)
1,2,3,7,8-PeCDD	ND(0.0000041) X [ND(0.0000046) X]	ND(0.0000085) X	ND(0.0000029)
PeCDDs (total)	0.000018 J [0.000037 J]	0.000032	0.000010
1,2,3,4,7,8-HxCDD	0.0000022 J [0.0000028]	0.0000061 J	ND(0.0000050)
1,2,3,6,7,8-HxCDD	0.0000043 [0.0000057]	0.0000088 J	ND(0.0000039)
1,2,3,7,8,9-HxCDD	0.0000039 [0.0000049]	ND(0.0000079) X	ND(0.0000044)
HxCDDs (total)	0.000054 [0.000074]	0.000081	ND(0.0000059)
1,2,3,4,6,7,8-HpCDD	0.000032 [0.000037]	0.000072	ND(0.0000064)
HpCDDs (total)	0.000067 [0.000075]	0.00015	0.000011
OCDD	0.00014 [0.00016]	0.00035	ND(0.000017)
Total TEQs (WHO TEFs)	0.00013 [0.00017]	0.00049	0.0000098
Inorganics			
Antimony	1.50 B [1.50 B]	1.40 B	1.20 B
Arsenic	6.8 J [5.60 J]	9.20	14.0
Barium	74.0 [60.0]	91.0	67.0
Beryllium	ND(0.500) [ND(0.500)]	ND(0.500)	0.560
Cadmium	1.10 [0.830]	1.00	0.790
Chromium	16.0 [14.0]	20.0	22.0
Cobalt	13.0 [12.0]	12.0	16.0
Copper	150 [110]	140	28.0
Cyanide	0.160 [ND(0.130)]	0.210	ND(0.150)
Lead	160 [130]	210	21.0
Mercury	0.220 [0.260]	0.690	0.0930 B
Nickel	25.0 [20.0]	24.0	26.0
Selenium	ND(1.00) [ND(1.00)]	ND(1.00) J	ND(1.10) J
Silver	ND(1.00) J [ND(1.00) J]	ND(1.00)	ND(1.10)
Sulfide	13 J [28 J]	18.0	9.50
Thallium	1.00 B [ND(2.00)]	ND(2.10) J	ND(2.20) J
Tin	14.0 [11.0]	ND(10.0)	ND(11.0)
Vanadium	15.0 [13.0]	18.0	24.0
Zinc	170 J [160 J]	230 J	92.0 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:		RAA13-D90	RAA13-D97	RAA13-D97
Sample Depth(Feet): Parameter Date Collected:		0-1 10/01/02	1-3	6-10 10/09/02
	10/24/02	10/01/02	10/09/02	10/09/02
Volatile Organics	L ND/O OCCOS	ND/0.0000	110(0,0000)	110
1,2-Dibromo-3-chloropropane	ND(0.0066)	ND(0.0069)	ND(0.0063)	NS NS
Acetone	ND(0.027)	ND(0.028) J	ND(0.025)	NS
Benzene	ND(0.0066)	ND(0.0069)	ND(0.0063)	NS
Chlorobenzene	ND(0.0066)	ND(0.0069)	ND(0.0063)	NS
Tetrachloroethene	ND(0.0066)	ND(0.0069)	ND(0.0063)	NS
Toluene	ND(0.0066)	ND(0.0069)	ND(0.0063)	NS
Trichloroethene	ND(0.0066)	0.0050 J	ND(0.0063)	NS
Semivolatile Organics				
1,2,4-Trichlorobenzene	NS	ND(0.46)	ND(0.42)	NS
1,2-Dichlorobenzene	NS	ND(0.46)	ND(0.42)	NS
1,3-Dichlorobenzene	NS	ND(0.46)	ND(0.42)	NS
1,4-Dichlorobenzene	NS	ND(0.46)	ND(0.42)	NS
2,4-Dimethylphenol	NS	ND(0.46)	ND(0.42)	NS
2,4-Dinitrotoluene	NS	ND(0.46)	ND(0.42)	NS
2-Chloronaphthalene	NS	ND(0.46)	ND(0.42)	NS
2-Chlorophenol	NS	ND(0.46)	ND(0.42)	NS
2-Methylnaphthalene	NS	ND(0.46)	ND(0.42)	NS
2-Methylphenol	NS	ND(0.46)	ND(0.42)	NS
3&4-Methylphenol	NS	0.42 J	ND(0.85)	NS
3,3'-Dichlorobenzidine	NS	ND(0.93)	ND(0.85)	NS
4-Chloro-3-Methylphenol	NS	ND(0.46)	ND(0.42)	NS
4-Chloroaniline	NS	ND(0.46)	ND(0.42)	NS
4-Nitrophenol	NS	ND(2.4)	ND(2.2) J	NS
Acenaphthene	NS	ND(0.46)	ND(0.42)	NS
Acenaphthylene	NS	ND(0.46)	ND(0.42)	NS
Aniline	NS	0.26 J	0.16 J	NS
Anthracene	NS	0.20 J	ND(0.42)	NS
Benzo(a)anthracene	NS	0.57	ND(0.42)	NS
Benzo(a)pyrene	NS	0.44 J	ND(0.42)	NS NS
Benzo(b)fluoranthene	NS	0.59	ND(0.42)	NS
Benzo(g,h,i)perylene	NS	0.36 J	ND(0.42)	NS
Benzo(k)fluoranthene	NS NS	0.18 J	ND(0.42)	NS
bis(2-Ethylhexyl)phthalate	NS	ND(0.46)	ND(0.42)	NS
Chrysene	NS	1.1	ND(0.42)	NS NS
Dibenzo(a,h)anthracene	NS NS	ND(0.46)	ND(0.42)	NS NS
Dibenzofuran	NS NS	ND(0.46)	ND(0.42)	NS NS
Di-n-Butylphthalate	NS NS	ND(0.46)	ND(0.42) ND(0.42)	NS NS
Fluoranthene	NS NS	1.3	ND(0.42)	NS NS
Fluorene	NS NS	ND(0.46)	ND(0.42) ND(0.42)	NS NS
Indeno(1,2,3-cd)pyrene	NS NS	0.28 J	ND(0.42) ND(0.42)	NS NS
Naphthalene	NS NS	ND(0.46)	ND(0.42) ND(0.42)	NS NS
N-Nitroso-di-n-propylamine	NS NS	ND(0.46)		
······································	NS NS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ND(0.42)	NS NS
Pentachlorophenol	NS NS	ND(2.4)	ND(2.2)	NS NS
Phenal Phanal		0.85	ND(0.42)	NS NS
Phenol	NS	1.1 ND(0.46)	ND(0.42)	NS NS
Pronamide	NS NS	ND(0.46)	ND(0.42)	NS NS
Pyrene	NS	1.2	ND(0.42)	NS

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	1	3-D87	RAA13-D90	RAA13-D97	RAA13-D97
-	-1	!-15	0-1	1-3	6-10
Parameter Date	Collected: 10/2	24/02	10/01/02	10/09/02	10/09/02
Furans					
2,3,7,8-TCDF		VS.	0.000025 Y	0.000023 YI	0.00016 Y
TCDFs (total)		NS .	0.00034	0.00021 I	0.0016
1,2,3,7,8-PeCDF		1S	0.000014	0.0000098	0.000087
2,3,4,7,8-PeCDF		1S	0.000060	0.000012	0.00020
PeCDFs (total)		1S	0.0024 QI	0.00018 QI	0.0027
1,2,3,4,7,8-HxCDF		1S	0.000064	0.000016	0.00021
1,2,3,6,7,8-HxCDF		1S	0.000081	0.000011	0.00015 I
1,2,3,7,8,9-HxCDF		1S	ND(0.000011) X	0.0000021 J	ND(0.000035)
2,3,4,6,7,8-HxCDF		VS	0.00018	0.000011	0.00026
HxCDFs (total)		VS	0.00381	0.00017	0.0047
1,2,3,4,6,7,8-HpCDF		vs.	0.00030	0.000026	0.00043
1,2,3,4,7,8,9-HpCDF		1S	0.000021	0.0000031	0.000053
HpCDFs (total)		VS	0.00082	0.000058	0.0015
OCDF		1S	0.000082	0.000021	0.00029
Dioxins					
2,3,7,8-TCDD	1	٧S	0.0000015 J	ND(0.00000031) X	0.0000021
TCDDs (total)		vs	0.0000074	0.0000043	0.0000391
1,2,3,7,8-PeĆDD	1	vs	ND(0.0000018) X	ND(0.00000085) X	ND(0.0000062) X
PeCDDs (total)		vs	0.000015 Q	0.0000039	0.000063 1
1,2,3,4,7,8-HxCDD		vs	0.0000020 J	0.00000045 J	0.0000043
1,2,3,6,7,8-HxCDD		vs	0.0000024 J	0.00000062 J	0.0000084
1,2,3,7,8,9-HxCDD		1 S	0.0000027 J	ND(0.00000060) X	0.0000091
HxCDDs (total)		vs	0.000038	0.000068	0.00011 I
1,2,3,4,6,7,8-HpCDD		vs.	0.000020	0.0000049	0.000047
HpCDDs (total)		vs.	0.000051	0.000012	0.00010
OCDD		NS	0.00014	0.000020	0.00014
Total TEQs (WHO TEFs)		vs.	0.000073	0.000014	0.00020
Inorganics					
Antimony		NS	1.10 B	ND(6.00)	NS
Arsenic		vs	7.60 J	5 J	NS
Barium		vs	43.0	30.0	NS
Beryllium		vs VS	ND(0.500)	ND(0.500)	NS
Cadmium		vs VS	ND(0.500)	ND(0.500)	NS NS
Chromium		NS	9.10	8.40	NS NS
Cobalt		vs	9.40	7.20	NS
Copper		<u></u> 1S	88.0	23.0	NS
Cyanide		vs vs	ND(0.280)	ND(0.130)	NS
Lead		vs VS	240	26.0	NS NS
Mercury		vs	ND(0.140)	0.150	NS
Nickel		vs VS	17.0	13.0	NS
Selenium		vs	ND(1.00) J	ND(1.00)	NS
Silver		vs	ND(1.00)	ND(1.00) J	NS
Sulfide		vs	33 J	18.0	NS NS
Thallium		vs vs	ND(2.10) J	ND(1.90)	NS NS
Tin		vs vs	31.0	ND(10.0)	NS NS
Vanadium		vs vs	9.30	10.0	NS
Zinc		<u>vs</u> VS	100	53 J	NS NS

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample/Location ID: Sample Depth(Feet):	RAA13-D98 0-1	RAA13-D99 10-15	RAA13-D99 12-15	RAA13-E87 0-1
Parameter	Date Collected:	10/09/02	10/09/02	10/09/02	10/15/02
Volatile Organics					
1,2-Dibromo-3-chloro	propane	ND(0.0069)	NS	ND(0.0064)	ND(0.0071)
Acetone		ND(0.028)	NS	ND(0.026)	ND(0.028)
Benzene		ND(0.0069)	NS	ND(0.0064)	ND(0.0071)
Chlorobenzene		ND(0.0069)	NS	ND(0.0064)	ND(0.0071)
Tetrachloroethene		ND(0.0069)	NS	ND(0.0064)	ND(0.0071)
Toluene		ND(0.0069)	NS	ND(0.0064)	ND(0.0071)
Trichloroethene		ND(0.0069)	NS	ND(0.0064)	ND(0.0071)
Semivolatile Organi	cs	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1 (15(0:0001)	(10,000,1)
1,2,4-Trichlorobenzer		ND(0.46)	NS	l NS l	ND(0.47)
1,2-Dichlorobenzene		ND(0.46)	NS NS	NS NS	ND(0.47)
1,3-Dichlorobenzene		ND(0.46)	NS NS	NS NS	ND(0.47)
1,4-Dichlorobenzene		ND(0.46)	NS NS	NS NS	ND(0.47)
2,4-Dimethylphenol		ND(0.46)	NS NS	NS NS	ND(0.47)
2,4-Dinitrotoluene		ND(0.46)	NS NS	NS NS	ND(0.47)
2-Chloronaphthalene		ND(0.46)	NS	NS NS	ND(0.47)
2-Chlorophenol		ND(0.46)	NS NS	NS NS	ND(0.47)
2-Methylnaphthalene		ND(0.46)	NS NS	NS NS	ND(0.47)
2-Methylphenol		ND(0.46)	NS NS	NS NS	ND(0.47)
3&4-Methylphenol		ND(0.92)	NS NS	NS T	ND(0.47)
3,3'-Dichlorobenziding	_	ND(0.92)	NS NS	NS NS	ND(0.95)
4-Chloro-3-Methylphe		ND(0.46)	NS	NS NS	ND(0.95) ND(0.47)
4-Chloroaniline	3101	ND(0.46)	NS NS	NS NS	
4-Nitrophenol		ND(2.3) J	NS NS	NS NS	ND(0.47)
Acenaphthene		ND(0.46)	NS NS	NS NS	ND(2.4)
Acenaphthylene		ND(0.46)	NS NS	NS NS	ND(0.47)
Aniline		0.66	NS NS	NS NS	ND(0.47)
Anthracene		ND(0.46)	NS NS		0.15 J
Benzo(a)anthracene		ND(0.46)	NS NS	NS NS	ND(0.47)
Benzo(a)pyrene		ND(0.46)	NS NS	NS NS	ND(0.47)
Benzo(b)fluoranthene		ND(0.46)	NS NS	NS NS	ND(0.47)
Benzo(g,h,i)perylene		ND(0.46)	NS NS	NS NS	0.10 J
Benzo(k)fluoranthene		ND(0.46)	NS NS	NS NS	ND(0.47)
bis(2-Ethylhexyl)phtha		ND(0.46) ND(0.45)	NS NS	NS NS	ND(0.47)
Chrysene	uiu.U	ND(0.46)	NS NS	NS NS	ND(0.46)
Dibenzo(a,h)anthrace	one -	ND(0.46)	NS NS	NS NS	ND(0.47)
Dibenzo(a,rr)aritmace	.11U	ND(0.46)	NS NS	NS NS	ND(0.47)
Di-n-Butylphthalate		ND(0.46) ND(0.46)	NS NS	NS NS	ND(0.47)
Fluoranthene		ND(0.46)	NS NS	NS NS	ND(0.47)
Fluorene		ND(0.46)	NS NS	NS NS	0.15 J
Indeno(1,2,3-cd)pyrer	ne	ND(0.46)	NS NS	NS NS	ND(0.47) ND(0.47)
Naphthalene		ND(0.46)	NS NS	NS NS	ND(0.47) ND(0.47)
N-Nitroso-di-n-propyla	amine	ND(0.46)	NS NS	NS NS	
Pentachlorophenol	25111110	ND(2.3)	NS NS		ND(0.47)
Phenanthrene		ND(0.46)	NS NS	NS NS	ND(2.4)
Phenol		ND(0.46) ND(0.46)	NS NS	NS NS	ND(0.47)
Pronamide		ND(0.46) ND(0.46)	NS NS		ND(0.47)
Pyrene		ND(0.46) ND(0.46)	NS NS	NS NS	ND(0.47) 0.20 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID: Sample Depth (Feet):	RAA13-D98 0-1	RAA13-D99 10-15	RAA13-D99 12-15	RAA13-E87 0-1
Parameter Date Collected:	10/09/02	10/09/02	10/09/02	10/15/02
Furans		1		
2,3,7,8-TCDF	0.000029 Y	ND(0.00000016) X	NS	0.00021 Y
TCDFs (total)	0.00025 QI	0.0000048	NS	0.0013
1,2,3,7,8-PeCDF	0.000014	ND(0.00000011) X	NS	0.000067
2,3,4,7,8-PeCDF	0.000024	ND(0.00000019) X	NS	0.000078
PeCDFs (total)	0.00035 QI	0.0000095	NS	0.00068 I
1,2,3,4,7,8-HxCDF	0.000024	ND(0.00000022) X	NS	0.000039
1,2,3,6,7,8-HxCDF	0.000016	0.00000017 J	NS	0.000025
1,2,3,7,8,9-HxCDF	0.0000045	ND(0.00000027)	NS	0.0000051 J
2,3,4,6,7,8-HxCDF	0.000025	ND(0.00000027)	NS	0.000026
HxCDFs (total)	0.00047	0.0000010	NS	0.00029
1,2,3,4,6,7,8-HpCDF	0.000052	0.00000036 J	NS	0.000049
1,2,3,4,7,8,9-HpCDF	0.0000062	ND(0.00000027)	NS	0.0000062
HpCDFs (total)	0.00017	0.0000036	NS	0.000089
OCDF	0.000041	ND(0.00000042) X	NS	0.000048
Dioxins			1	
2,3,7,8-TCDD	0.00000039 J	ND(0.00000011)	NS	ND(0.0000014) X
TCDDs (total)	0.0000042	ND(0.00000020)	NS	0.000018
1,2,3,7,8-PeCDD	ND(0.0000025) X	ND(0.00000027)	NS	ND(0.0000034) X
PeCDDs (total)	0.0000065	ND(0.00000029)	NS	0.000027
1,2,3,4,7,8-HxCDD	0.00000078 J	ND(0.00000027)	NS	ND(0.000021) X
1,2,3,6,7,8-HxCDD	0.0000032	ND(0.00000027)	NS	0.0000037 J
1,2,3,7,8,9-HxCDD	0.0000013 J	ND(0.00000027)	NS	0.0000037 J
HxCDDs (total)	0.000022	0.00000031	NS	0.000051
1,2,3,4,6,7,8-HpCDD	0.000041	0.0000010 J	NS	0.000046
HpCDDs (total)	0.000081	0.0000019	NS	0.000081
OCDD	0.00044	0.0000051 J	NS	0.00041
Total TEQs (WHO TEFs)	0.000026	0.00000036	NS	0.000077
Inorganics				1 0.000077
Antimony	ND(6.00)	NS	NS	ND(6.00)
Arsenic	5.7 J	NS NS	NS	12.0
Barium	36.0	NS	NS	83.0
Beryllium	ND(0.500)	NS	NS	0.580
Cadmium	ND(0.500)	NS	NS	0.660
Chromium	10.0	NS	NS	32.0
Cobalt	7.20	NS	NS	13.0
Copper	31.0	NS	NS	47.0
Cyanide	0.150	NS	NS	0.150
Lead	43.0	NS	NS	96.0
Mercury	0.200	NS	NS	0.540
Nickel	15.0	NS	NS	24.0
Selenium	ND(1.00)	NS	NS	ND(1.00) J
Silver	ND(1.00) J	NS	NS	0.870 B
Sulfide	11.0	NS	NS	9.00
Thallium	ND(2.10)	NS	NS	ND(2.10)
Tin	ND(10.0)	NS	NS	16.0
Vanadium	16.0	NS	NS	15.0
Zinc	85 J	NS NS	NS	130

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:	RAA13-E92	RAA13-E94	RAA13-E95	RAA13-F89
Sample Depth(Feet):	0-1	0-1	1-3	0-1
Parameter Date Collected:	10/01/02	09/30/02	09/30/02	10/23/02
Volatile Organics		,		
1,2-Dibromo-3-chloropropane	ND(0.0073)	ND(0.0068)	ND(0.0070) J	ND(0.0075)
Acetone	ND(0.029) J	ND(0.027) J	ND(0.028) J	ND(0.030)
Benzene	ND(0.0073)	ND(0.0068)	ND(0.0070) J	ND(0.0075)
Chlorobenzene	ND(0.0073)	ND(0.0068)	ND(0.0070) J	ND(0.0075)
Tetrachioroethene	0.0039 J	ND(0.0068)	ND(0.0070) J	ND(0.0075)
Toluene	ND(0.0073)	ND(0.0068)	ND(0.0070) J	ND(0.0075)
Trichloroethene	0.14	ND(0.0068)	ND(0.0070) J	ND(0.0075)
Semivolatile Organics				
1,2,4-Trichlorobenzene	0.14 J	0.31 J	0.18 J	0.76
1,2-Dichlorobenzene	ND(0.48)	ND(0.63)	ND(0.66)	ND(0.50)
1,3-Dichlorobenzene	ND(0.48)	ND(0.63)	ND(0.66)	ND(0.50)
1,4-Dichlorobenzene	ND(0.48)	0.41 J	0.13 J	0.64
2,4-Dimethylphenol	0.60	ND(0.63)	ND(0.66)	ND(0.50)
2,4-Dinitrotoluene	ND(0.48)	ND(0.63)	ND(0.66)	1.1
2-Chloronaphthalene	ND(0.48)	ND(0.63)	ND(0.66)	ND(0.50)
2-Chlorophenol	ND(0.48)	ND(0.63)	ND(0.66)	2.1
2-Methylnaphthalene	0.24 J	ND(0.63)	0.13 J	ND(0.50)
2-Methylphenol	0.19 J	ND(0.63)	ND(0.66)	ND(0.50)
3&4-Methylphenol	0.48 J	ND(0.90)	0.21 J	ND(1.0)
3,3'-Dichlorobenzidine	ND(0.98)	ND(1.3)	ND(1.3)	ND(1.0)
4-Chloro-3-Methylphenol	ND(0.48)	ND(0.63)	ND(0.66)	2.2
4-Chloroaniline	ND(0.48)	ND(0.63)	ND(0.66)	ND(0.50)
4-Nitrophenol	ND(2.5)	ND(3.2)	ND(3.3)	1.8 J
Acenaphthene	0.65	ND(0.63)	0.14 J	1.0
Acenaphthylene	ND(0.48)		0.14 3	
Aniline	7.6	ND(0.63) 0.23 J		ND(0.50)
Anthracene	1.6		3.4 0.94	ND(0.50)
L	2.8	ND(0.63)		ND(0.50)
Benzo(a)anthracene		ND(0.63)	ND(0.66)	0.27 J
Benzo(a)pyrene	1.6	ND(0.63)	1.8	0.18 J
Benzo(b)fluoranthene	2.2	0.14 J	2.6	0.30 J
Benzo(g,h,i)perylene	0.77	ND(0.63)	1.4	0.20 J
Benzo(k)fluoranthene bis(2-Ethylhexyl)phthalate	0.82	ND(0.63)	0.84	0.14 J
	ND(0.48)	ND(0.44)	ND(0.46)	ND(0.49)
Chrysene	1.9	0.15 J	ND(0.66)	0.27 J
Dibenzo(a,h)anthracene	0.24 J	ND(0.63)	ND(0.66)	ND(0.50)
Dibenzofuran	0.45 J	ND(0.63)	0.19 J	ND(0.50)
Di-n-Butylphthalate	ND(0.48)	ND(0.63)	ND(0.66)	ND(0.50)
Fluoranthene	6.1	0.17 J	4.7	0.55
Fluorene	0.78	ND(0.63)	ND(0.66)	ND(0.50)
Indeno(1,2,3-cd)pyrene	0.73	ND(0.63)	1.3	0.14 J
Naphthalene	0.35 J	ND(0.63)	0.28 J	ND(0.50)
N-Nitroso-di-n-propylamine	ND(0.48)	ND(0.63)	ND(0.66)	0.85
Pentachlorophenol	ND(2.5)	ND(3.2)	ND(3.3)	0.81 J
Phenanthrene	5.2	ND(0.63)	3.1	0.33 J
Phenol	1.6	ND(0.63)	0.24 J	2.2
Pronamide	ND(0.48)	ND(0.63)	ND(0.66)	ND(0.50)
Pyrene	4.8	0.17 J	4.5	1.9

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:		RAA13-E94	RAA13-E95	RAA13-F89
Sample Depth(Feet):		0-1	1-3	0-1
Parameter Date Collected:	10/01/02	09/30/02	09/30/02	10/23/02
Furans			,	
2,3,7,8-TCDF	0.00048 Y	0.00054 YI	0.0013 YI	0.000020 Y
TCDFs (total)	0.0068 I	0.0051	0.0097 Q	0.00019 QI
1,2,3,7,8-PeCDF	0.00016	0.00017	0.00045 Q	0.0000090
2,3,4,7,8-PeCDF	0.00065	0.00088	0.0016 Q	0.000013
PeCDFs (total)	0.015	0.021 I	0.014 Q	0.00017 QI
1,2,3,4,7,8-HxCDF	0.00052	0.0073 EJ	0.00079	0.000015
1,2,3,6,7,8-HxCDF	0.00050	0.0016	0.00048	0.0000091
1,2,3,7,8,9-HxCDF	0.000090	0.0014	0.00012	ND(0.0000020) X
2,3,4,6,7,8-HxCDF	0.0010	0.0029 EJ	0.00090	0.000014
HxCDFs (total)	0.018 I	0.043 I	0.013 Q	0.00047
1,2,3,4,6,7,8-HpCDF	0.0014	0.0081 EJ	0.0012	0.00035
1,2,3,4,7,8,9-HpCDF	0.00016	0.0035 EJ	0.00017	0.000018
HpCDFs (total)	0.0040	0.023	0.0028	0.0024
OCDF	0.00067	0.0062 EJ	0.00091	0.0044 EJ
Dioxins				
2,3,7,8-TCDD	0.000026	0.000096	0.000011 Q	0.00000045 J
TCDDs (total)	0.00012	0.0019	0.00018 Q	0.0000050
1,2,3,7,8-PeCDD	ND(0.000038) X	0.0016	ND(0.000041) X	0.0000012 J
PeCDDs (total)	0.00023	0.013	0.00032 Q	0.0000098
1,2,3,4,7,8-HxCDD	0.000018	0.0019	0.000022 J	0.0000035
1,2,3,6,7,8-HxCDD	0.000053	0.0020	0.000054	0.000040
1,2,3,7,8,9-HxCDD	0.000045	0.0016	0.000055	0.0000089
HxCDDs (total)	0.00060	0.031	0.00065	0.00014
1,2,3,4,6,7,8-HpCDD	0.00016	0.0071 EJ	0.00032	0.0015 EJ
HpCDDs (total)	0.00038	0.017	0.00066	0.0023
OCDD	0.00053	0.020 EJ	0.0027	0.0025 0.015 EJ
Total TEQs (WHO TEFs)	0.00067	0.0043	0.0027	0.000040
Inorganics	0.0000.	0.0040	0.0012	0.000040
Antimony	2.00 B	1.80 B	ND(6.00)	ND(6.00)
Arsenic	16.0 J	12.0	10.0	6.00
Barium	95.0	22.0	110	44.0
Beryllium	0.170 B	0.140 B	ND(0.500)	
Cadmium	0.860	ND(0.500)		ND(0.500)
Chromium	23.0	11.0	2.30 220	1.40 12.0
Cobalt	15.0	9.20	9.90	
Copper	200	97.0		7.90
Cyanide	0.110 B		3700 0.180	30.0
Lead	530	ND(0.140)		ND(0.750)
<u> </u>		89.0	3200	110
Mercury Nickel	1.80	ND(0.140)	1.00	2.20
	53.0 ND(1.10) I	26.0	30.0	16.0
Selenium	ND(1.10) J	ND(1.00)	ND(1.00)	ND(1.10)
Silver	0.910 B	ND(1.00)	ND(1.00)	ND(1.10)
Sulfide	44 J	28.0	38.0	130 J
Thallium	3.10 J	1.40 B	3.70	ND(2.20)
Tin	100	ND(10.0)	38.0	150
Vanadium	230	9.30	11.0	9.10
Zinc	130	91.0	1900	280

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID: Sample Depth(Feet):	RAA13-F89 1-3	RAA13-F89 10-15	RAA13-F89 12-15	RAA13-F93 1-3
Parameter Date Collected:	10/23/02	10/23/02	10/23/02	09/30/02
Volatile Organics				<u> </u>
1,2-Dibromo-3-chloropropane	ND(0.0066)	NS	ND(0.0085) J	ND(0.0069) J
Acetone	ND(0.026)	NS	0.027 J	ND(0.028) J
Benzene	ND(0.0066)	NS	ND(0.0085)	ND(0.0069) J
Chlorobenzene	ND(0.0066)	NS	0.038	ND(0.0069) J
Tetrachloroethene	ND(0.0066)	NS	ND(0.0085)	ND(0.0069) J
Toluene	ND(0.0066)	NS	ND(0.0085)	ND(0.0069) J
Trichloroethene	ND(0.0066)	NS	ND(0.0085)	0.0086 J
Semivolatile Organics				1
1,2,4-Trichlorobenzene	ND(0.44)	ND(0.57)	NS	10
1,2-Dichlorobenzene	ND(0.44)	ND(0.57)	NS NS	ND(0.51)
1,3-Dichlorobenzene	ND(0.44)	ND(0.57)	NS	ND(0.51)
1,4-Dichlorobenzene	ND(0.44)	ND(0.57)	NS	0.15 J
2,4-Dimethylphenol	ND(0.44)	ND(0.57)	NS NS	ND(0.51)
2,4-Dinitrotoluene	ND(0.44)	ND(0.57)	NS	ND(0.51)
2-Chloronaphthalene	ND(0.44)	ND(0.57)	NS	0.19 J
2-Chlorophenol	ND(0.44)	ND(0.57)	NS NS	ND(0.51)
2-Methylnaphthalene	ND(0.44)	ND(0.57)	NS	ND(0.51)
2-Methylphenol	ND(0.44)	ND(0.57)	NS	0.14 J
3&4-Methylphenol	ND(0.88)	ND(1.1)	NS	0.14 J
3,3'-Dichlorobenzidine	ND(0.88)	ND(1.1)	NS NS	ND(1.0)
4-Chloro-3-Methylphenol	ND(0.44)	ND(1.1) ND(0.57)	NS NS	ND(0.51)
4-Chloroaniline	ND(0.44)	ND(0.57)	NS NS	ND(0.51)
4-Nitrophenol	ND(2.2) J	ND(2.9)	NS NS	ND(0.51) ND(2.5)
Acenaphthene	ND(0.44)	ND(0.57)	NS NS	ND(0.51)
Acenaphthylene	ND(0.44)	ND(0.57)	NS NS	0.25 J
Aniline	ND(0.44)	ND(0.57)	NS NS	0.25 J 0.46 J
Anthracene	ND(0.44)	ND(0.57)	NS NS	0.46 J
Benzo(a)anthracene	ND(0.44)	ND(0.57)	NS NS	ND(0.51)
Benzo(a)pyrene	ND(0.44)	ND(0.57)	NS NS	0.67
Benzo(b)fluoranthene	ND(0.44)	ND(0.57)	NS NS	0.76
Benzo(g,h,i)perylene	ND(0.44)	ND(0.57)	NS NS	1.2
Benzo(k)fluoranthene	ND(0.44)	ND(0.57)	NS NS	0.25 J
bis(2-Ethylhexyl)phthalate	ND(0.44)	ND(0.56)	NS NS	ND(0.46)
Chrysene	ND(0.44)	ND(0.57)	NS NS	ND(0.51)
Dibenzo(a,h)anthracene	ND(0.44)	ND(0.57)	NS NS	ND(0.51)
Dibenzofuran	ND(0.44)	ND(0.57)	NS NS	ND(0.51)
Di-n-Butylphthalate	ND(0.44)	ND(0.57)	NS NS	0.95
Fluoranthene	ND(0.44)	ND(0.57)	NS NS	0.37 J
Fluorene	ND(0.44)	ND(0.57)	NS NS	ND(0.51)
Indeno(1,2,3-cd)pyrene	ND(0.44)	ND(0.57)	NS NS	0.79
Naphthalene	ND(0.44)	ND(0.57)	NS NS	ND(0.51)
N-Nitroso-di-n-propylamine	ND(0.44)	ND(0.57)	NS NS	ND(0.51)
Pentachlorophenol	ND(2.2)	ND(2.9)	NS NS	ND(0.51) ND(2.5)
Phenanthrene	ND(0.44)	ND(0.57)	NS NS	ND(0.51)
Phenol	ND(0.44)	ND(0.57)	NS NS	0.67
Pronamide	ND(0.44)	ND(0.57)	NS NS	ND(0.51)
Pyrene	ND(0.44)	ND(0.57)	NS NS	0.63

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:	RAA13-F89	RAA13-F89	RAA13-F89	RAA13-F93
Sample Depth(Feet):	1-3	10-15	12-15	1-3
Parameter Date Collected:	10/23/02	10/23/02	10/23/02	09/30/02
Furans				
2,3,7,8-TCDF	0.0000019 YI	ND(0.00000012) X	NS	0.00014 YI
TCDFs (total)	0.000011	ND(0.00000013)	NS	0.00311
1,2,3,7,8-PeCDF	0.00000064 J	ND(0.00000018) X	NS	0.00031
2,3,4,7,8-PeCDF	0.00000093 J	ND(0.00000011)	NS	0.00091
PeCDFs (total)	0.000010	0.00000054	NS	0.013 Q
1,2,3,4,7,8-HxCDF	0.00000087 J	ND(0.00000021)	NS	0.0074 EJ
1,2,3,6,7,8-HxCDF	0.00000062 J	0.00000018 J	NS	0.0017
1,2,3,7,8,9-HxCDF	0.00000018 J	ND(0.000000072)	NS	0.0012 Q
2,3,4,6,7,8-HxCDF	0.00000080 J	ND(0.000000080) X	NS	0.0017
HxCDFs (total)	0.000017	0.00000065	NS	0.051 Q
1,2,3,4,6,7,8-HpCDF	0.0000082	ND(0.00000025)	NS	0.013 EJ
1,2,3,4,7,8,9-HpCDF	0.00000064 J	ND(0.00000033)	NS	0.0084 EJ
HpCDFs (total)	0.000044	ND(0.00000025)	NS	0.047
OCDF	0.000081	0.00000083 J	NS	0.052 EIJ
Dioxins				
2,3,7,8-TCDD	ND(0.00000013) X	ND(0.00000013)	NS	0.000058
TCDDs (total)	ND(0.00000018)	ND(0.00000022)	NS	0.0016
1,2,3,7,8-PeCDD	ND(0.00000011) X	ND(0.00000033)	NS	0.0010
PeCDDs (total)	0.00000020	ND(0.00000033)	NS	0.0057 Q
1,2,3,4,7,8-HxCDD	0.00000011 J	ND(0.00000033)	NS	0.00081
1,2,3,6,7,8-HxCDD	0.00000083 J	ND(0.00000033)	NS	0.0018
1,2,3,7,8,9-HxCDD	0.00000020 J	ND(0.00000033)	NS	0.0018
HxCDDs (total)	0.0000017	ND(0.00000037)	NS	0.022
1,2,3,4,6,7,8-HpCDD	0.000027	ND(0.00000050)	NS	0.0071 EJ
HpCDDs (total)	0.000043	ND(0.00000086)	NS	0.017
OCDD	0.00028	ND(0.0000039)	NS	0.012 EJ
Total TEQs (WHO TEFs)	0.0000016	0.00000036	NS	0.0035
Inorganics		l		
Antimony	ND(6.00)	ND(6.00)	NS	ND(6.00)
Arsenic	8.00	2.70	NS	1.60
Barium	ND(20.0)	28.0	NS	22.0
Beryllium	0.190 B	ND(0.500)	NS	0.0890 B
Cadmium	0.710	0.500	NS	ND(0.500)
Chromium	5.20	10.0	NS	8.00
Cobalt	6.00	7.30	NS	ND(5.00)
Copper	14.0	11.0	NS	88.0
Cyanide	ND(0.660)	ND(0.170)	NS	0.140
Lead	14.0	5.70	NS	71.0
Mercury	ND(0.130)	ND(0.170)	NS	3.50
Nickel	10.0	11.0	NS	9.60
Selenium	ND(1.00)	ND(1.30)	NS	ND(1.00)
Silver	ND(1.00)	ND(1.30)	NS	ND(1.00)
Sulfide	36.0 J	57.0 J	NS	49.0
Thallium	ND(2.00)	ND(2.60)	NS	ND(2.10)
Tin	25.0	6.60 B	NS	66.0
Vanadium	ND(5.00)	8.60	NS	ND(5.00)
Zinc	61.0	49.0	NS	140

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:		RAA13-F96	RAA13-G90	RAA13-G92
Sample Depth(Feet):		0-1	0-1	0-1
Parameter Date Collected:	09/30/02	09/26/02	10/15/02	10/01/02
Volatile Organics		-		
1,2-Dibromo-3-chloropropane	NS	ND(0.0055)	ND(0.0072)	ND(0.0078) [ND(0.0078) J]
Acetone	NS	ND(0.022)	ND(0.029)	ND(0.031) J [0.032 J]
Benzene	NS	ND(0.0055)	ND(0.0072)	ND(0.0078) [ND(0.0078) J]
Chlorobenzene	NS	ND(0.0055)	ND(0.0072)	ND(0.0078) [ND(0.0078) J]
Tetrachloroethene	NS	ND(0.0055)	ND(0.0072)	ND(0.0078) [ND(0.0078) J]
Toluene	NS	ND(0.0055)	ND(0.0072)	ND(0.0078) [ND(0.0078) J]
Trichloroethene	NS	ND(0.0055)	ND(0.0072)	ND(0.0078) [0.0087 J]
Semivolatile Organics				
1,2,4-Trichlorobenzene	NS	ND(0.44)	ND(0.48)	6.8 [2.5]
1,2-Dichlorobenzene	NS	ND(0.44)	ND(0.48)	ND(0.63) [ND(0.62)]
1,3-Dichlorobenzene	NS	ND(0.44)	ND(0.48)	ND(0.63) [ND(0.62)]
1,4-Dichlorobenzene	NS	ND(0.44)	ND(0.48)	0.13 J [ND(0.62)]
2,4-Dimethylphenol	NS	ND(0.44)	ND(0.48)	0.18 J [ND(0.62)]
2,4-Dinitrotoluene	NS	ND(0.44)	ND(0.48)	ND(0.63) [ND(0.62)]
2-Chloronaphthalene	NS	ND(0.44)	ND(0.48)	ND(0.63) [ND(0.62)]
2-Chlorophenol	NS	ND(0.44)	ND(0.48)	ND(0.63) [ND(0.62)]
2-Methylnaphthalene	NS	ND(0.44)	ND(0.48)	0.13 J [0.14 J]
2-Methylphenol	NS	ND(0.44)	ND(0.48)	0.60 J [0.55 J]
3&4-Methylphenol	NS	ND(0.74)	ND(0.96)	0.85 J [0.53 J]
3,3'-Dichlorobenzidine	NS	ND(0.88) J	ND(0.96)	ND(1.2) [0.70 J]
4-Chloro-3-Methylphenol	NS	ND(0.44)	ND(0.48)	ND(0.63) [ND(0.62)]
4-Chloroaniline	NS	ND(0.44)	ND(0.48)	ND(0.63) [ND(0.62)]
4-Nitrophenol	NS	ND(2.2)	ND(2.4)	ND(3.1) [ND(3.1)]
Acenaphthene	NS	ND(0.44)	ND(0.48)	ND(0.63) [ND(0.62)]
Acenaphthylene	NS	0.19 J	ND(0.48)	0.24 J [0.34 J]
Aniline	NS	0.31 J	ND(0.48)	5.9 [4.5]
Anthracene	NS	0.15 J	ND(0.48)	0.30 J [0.40 J]
Benzo(a)anthracene	NS	0.47	ND(0.48)	0.94 [1.4]
Benzo(a)pyrene	NS	0.42 J	ND(0.48)	1.1 [1.6]
Benzo(b)fluoranthene	NS	0.42 J	ND(0.48)	1.6 [2.5]
Benzo(g,h,i)perylene	NS	0.28 J	ND(0.48)	0.82 [1.1]
Benzo(k)fluoranthene	NS	0.18 J	ND(0.48)	0.69 [0.96]
bis(2-Ethylhexyl)phthalate	NS	ND(0.36)	ND(0.47)	ND(0.52) [ND(0.51)]
Chrysene	NS	0.56	ND(0.48)	1.5 [2.0]
Dibenzo(a,h)anthracene	NS	ND(0.44)	ND(0.48)	0.22 J [0.26 J]
Dibenzofuran	NS	ND(0.44)	ND(0.48)	0.15 J [ND(0.62)]
Di-n-Butylphthalate	NS	ND(0.44)	ND(0.48)	ND(0.63) [ND(0.62)]
Fluoranthene	NS	0.97	ND(0.48)	2.8 [4.7]
Fluorene	NS	ND(0.44)	ND(0.48)	ND(0.63) [0.17 J]
Indeno(1,2,3-cd)pyrene	NS NS	0.19 J	ND(0.48)	0.66 [0.95]
Naphthalene	NS	ND(0.44)	ND(0.48)	0.00 (0.95) 0.25 J [0.25 J]
N-Nitroso-di-n-propylamine	NS	ND(0.44)	ND(0.48)	ND(0.63) [ND(0.62)]
Pentachlorophenol	NS	ND(2.2)	ND(2.4)	ND(3.1) [ND(3.1)]
Phenanthrene	NS	0.70	ND(0.48)	1.4 [2.4]
Phenol	NS	ND(0.44)	ND(0.48)	1.8 [0.94]
Pronamide	NS NS	ND(0.44)	ND(0.48)	
Pyrene	NS NS			ND(0.63) [ND(0.62)]
I Arene	INO	1.4	ND(0.48)	2.7 [4.4]

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample/Location ID: Sample Depth(Feet):	RAA13-F93 3-6	RAA13-F96 0-1	RAA13-G90 0-1	RAA13-G92 0-1
Parameter	Date Collected:	09/30/02	09/26/02	10/15/02	10/01/02
Furans					
2,3,7,8-TCDF		0.00057 Y	0.00097 YEJ	0.000024 Y	0.014 Y [0.014 YEJ]
TCDFs (total)		0.014 QI	0.0078	0.00021	0.10 l [0.099 l]
1,2,3,7,8-PeCDF		0.00098	0.00049	0.0000076	0.0055 [0.0062]
2,3,4,7,8-PeCDF		0.0044	0.00080	0.0000094	0.0084 [0.0095]
PeCDFs (total)		0.021 Q	0.0074 Q	0.00010	0.075 [0.078]
1,2,3,4,7,8-HxCDF		0.012 EJ	0.0010	0.0000084	0.012 [0.014 EIJ]
1,2,3,6,7,8-HxCDF		0.0035	0.00058	0.0000050 J	0.0067 [0.0075]
1,2,3,7,8,9-HxCDF		0.0030	0.00016	ND(0.00000075)	0.00095 [0.0010]
2,3,4,6,7,8-HxCDF		0.0020	0.00053	0.0000047 J	0.0035 [0.0042]
HxCDFs (total)		0.043	0.0058	0.000066	0.059 [0.066 I]
1,2,3,4,6,7,8-HpCE)F	0.0091	0.0017	0.000017	0.011 [0.015 EÍJ]
1,2,3,4,7,8,9-HpCE		0.0080	0.00022	0.0000018 J	0.0018 [0.0019]
HpCDFs (total)		0.035	0.0025	0.000031	0.016 [0.022 I]
OCDF		0.041 EJ	0.0010	0.000018	0.011 [0.0093]
Dioxins				· · · · · · · · · · · · · · · · · · ·	
2,3,7,8-TCDD		ND(0.00015) X	0.0000079	0.00000062 J	0.000083 [0.000077]
TCDDs (total)		0.0073 Q	0.00026	0.0000098	0.0020 Q [0.0017]
1,2,3,7,8-PeCDD		ND(0.0020) X	0.000037	ND(0.0000010) X	ND(0.00015) X [ND(0.00026) X]
PeCDDs (total)		0.0076 Q	0.00050 Q	0.0000080	0.0020 Q [0.0024]
1,2,3,4,7,8-HxCDD		0.00077	0.000045	ND(0.00000067) X	0.00013 [0.00018]
1,2,3,6,7,8-HxCDD		0.0036	0.000073	0.0000016 J	0.00023 [0.00031]
1,2,3,7,8,9-HxCDD		0.0018	0.000057	0.0000012 J	0.00017 [0.00024]
HxCDDs (total)		0.031	0.00097	0.000018	0.0034 [0.0044]
1,2,3,4,6,7,8-HpCE	OD .	0.0055	0.00042	0.000020	0.0012 [0.0016]
HpCDDs (total)		0.012	0.00086	0.000037	0.0026 [0.0036]
OCDD		0.0062	0.00068	0.00011	0.0030 [0.0036]
Total TEQs (WHO	TEFs)	0.0063	0.00083	0.000011	0.0085 [0.0096]
Inorganics					
Antimony		NS	1.10 B	ND(6.00)	15.0 [27.0]
Arsenic		NS	5.60	5.50	11.0 J [17.0 J]
Barium		NS	25.0 J	190	390 [460]
Beryllium		NS	0.150 B	ND(0.500)	0.630 [0.730]
Cadmium		NS	ND(0.500)	0.630	7.50 [9.60]
Chromium		NS	6.80	24.0	180 [180]
Cobalt		NS	8.40	ND(5.00)	24.0 [34.0]
Copper		NS	42.0	58.0	1800 [2500]
Cyanide		NS	ND(0.220)	0.170	0.800 [0.510]
Lead		NS	27.0 J	110	3000 [5700]
Mercury		NS	0,310	0.0780 B	13.0 [17.0]
Nickel		NS	14.0	12.0	150 [170]
Selenium		NS	ND(1.00)	ND(1.10) J	ND(1.20) J [ND(1.20) J]
Silver		NS	ND(1.00)	ND(1.10)	7.20 [11.0]
Sulfide		NS	30.0	ND(7.20)	35 J [62 J]
Thallium		NS NS	ND(1.60) J	ND(2.20)	3.60 J [3.40 J]
Tin		NS	3.80 B	ND(2:20) ND(11.0)	110 [140]
Vanadium		NS NS	6.20	14.0	20.0 [26.0]
Zinc		NS NS	76.0	400	2400 [3100]
ム ロル		140	10.0	<u>++00</u>	2400 [3100]

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample/Location ID:	RAA13-G94	RAA13-H89	RAA13-H89
	Sample Depth(Feet):	0-1	0-1	1-3
Parameter	Date Collected:	09/30/02	10/23/02	10/23/02
Volatile Organics				
1,2-Dibromo-3-chloro	propane	ND(0.0068)	ND(0.0072)	ND(0.0062)
Acetone		ND(0.027) J	ND(0.029)	ND(0.025)
Benzene		ND(0.0068)	ND(0.0072)	ND(0.0062)
Chlorobenzene		ND(0.0068)	ND(0.0072)	ND(0.0062)
Tetrachloroethene		ND(0.0068)	ND(0.0072)	ND(0.0062)
Toluene		ND(0.0068)	ND(0.0072)	ND(0.0062)
Trichloroethene		ND(0.0068)	ND(0.0072)	ND(0.0062)
Semivolatile Organi	cs			
1,2,4-Trichlorobenzer	ne	ND(0.45)	ND(0.48)	ND(0.42)
1,2-Dichlorobenzene		ND(0.45)	ND(0.48)	ND(0.42)
1,3-Dichlorobenzene		ND(0.45)	ND(0.48)	ND(0.42)
1,4-Dichlorobenzene		ND(0.45)	ND(0.48)	ND(0.42)
2,4-Dimethylphenol		ND(0.45)	ND(0.48)	ND(0.42)
2,4-Dinitrotoluene		ND(0.45)	ND(0.48)	ND(0.42)
2-Chloronaphthalene		ND(0.45)	ND(0.48)	ND(0.42)
2-Chlorophenol		ND(0.45)	ND(0.48)	ND(0.42)
2-Methylnaphthalene		ND(0.45)	ND(0.48)	ND(0.42)
2-Methylphenol		ND(0.45)	ND(0.48)	ND(0.42)
3&4-Methylphenol		ND(0.91)	ND(0.97)	ND(0.83)
3,3'-Dichlorobenzidine	9	ND(0.91)	ND(0.97)	ND(0.83)
4-Chloro-3-Methylphe		ND(0.45)	ND(0.48)	ND(0.42)
4-Chloroaniline		ND(0.45)	ND(0.48)	ND(0.42)
4-Nitrophenol		ND(2.3)	ND(2.4) J	ND(0.42)
Acenaphthene		ND(0.45)	ND(0.48)	
Acenaphthylene		0.19 J	ND(0.48)	ND(0.42)
Aniline		0.19 J	ND(0.48)	ND(0.42)
Anthracene		0.22 J		ND(0.42)
Benzo(a)anthracene		1.9	ND(0.48)	ND(0.42)
Benzo(a)pyrene		1.3	ND(0.48)	ND(0.42)
Benzo(b)fluoranthene		1.4	ND(0.48)	ND(0.42)
Benzo(g,h,i)perylene		0.79	ND(0.48)	ND(0.42)
Benzo(k)fluoranthene		0.79	ND(0.48)	ND(0.42)
bis(2-Ethylhexyl)phtha		ND(0.45)	ND(0.48)	ND(0.42)
Chrysene	nate	1.8	ND(0.48)	ND(0.41)
Dibenzo(a,h)anthrace	ne l	0.19 J	ND(0.48)	ND(0.42)
Dibenzo(a,rr)antirrace Dibenzofuran	110	ND(0.45)	ND(0.48)	ND(0.42)
Di-n-Butylphthalate			ND(0.48)	ND(0.42)
Fluoranthene		ND(0.45)	ND(0.48)	ND(0.42)
Fluorene		3.6 ND(0.45)	ND(0.48)	ND(0.42)
ndeno(1,2,3-cd)pyrer		ND(0.45)	ND(0.48)	ND(0.42)
Naphthalene	10	0.67 ND(0.45)	ND(0.48)	ND(0.42)
	mina	ND(0.45)	ND(0.48)	ND(0.42)
N-Nitroso-di-n-propyla	arriine	ND(0.45)	ND(0.48)	ND(0.42)
Pentachlorophenol		ND(2.3)	ND(2.4)	ND(2.1)
Phenanthrene		1.2	ND(0.48)	ND(0.42)
Phenol		0.094 J	ND(0.48)	ND(0.42)
Pronamide		ND(0.45)	ND(0.48)	ND(0.42)
Pyrene	 	4.3	ND(0.48)	ND(0.42)

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:		RAA13-H89	RAA13-H89
Sample Depth(Feet):		0-1	1-3
Parameter Date Collected:	09/30/02	10/23/02	10/23/02
Furans			
2,3,7,8-TCDF	0.000017 Y	0.000080 YI	0.0000014 Y
TCDFs (total)	0.00018 I	0.00067	0.0000065
1,2,3,7,8-PeCDF	0.0000063	0.000046	0.00000067 J
2,3,4,7,8-PeCDF	0.000010	0.000035	0.00000042 J
PeCDFs (total)	0.00018 QI	0.00041 QI	0.0000038
1,2,3,4,7,8-HxCDF	0.000014	0.000036	0.00000045 J
1,2,3,6,7,8-HxCDF	0.0000097	0.000019	0.00000021 J
1,2,3,7,8,9-HxCDF	0.0000016 J	0.0000059	ND(0.00000025)
2,3,4,6,7,8-HxCDF	0.000013	0.000019	0.00000022 J
HxCDFs (total)	0.00025	0.00028	0.0000026
1,2,3,4,6,7,8-HpCDF	0.000027	0.000050	0.00000050 J
1,2,3,4,7,8,9-HpCDF	0.0000045 J	0.0000061	ND(0.00000025)
HpCDFs (total)	0.000063	0.00011	0.00000050
OCDF	0.000028	0.000083	0.00000052 J
Dioxins			
2,3,7,8-TCDD	ND(0.00000036)	ND(0.00000091) X	ND(0.000000099)
TCDDs (total)	0.0000023	0.000022	ND(0.00000017)
1,2,3,7,8-PeCDD	ND(0.00000056)	ND(0.0000019) X	ND(0.00000025)
PeCDDs (total)	0.0000029 Q	0.000018	ND(0.00000030)
1,2,3,4,7,8-HxCDD	ND(0.00000039) X	0.000014 J	ND(0.0000025)
1,2,3,6,7,8-HxCDD	ND(0.0000011) X	0.0000037	ND(0.00000025)
1,2,3,7,8,9-HxCDD	ND(0.00000078) X	0.0000023 J	ND(0.00000025)
HxCDDs (total)	0.0000035	0.000036	ND(0.00000031)
1,2,3,4,6,7,8-HpCDD	0.000014	0.000051	ND(0.00000056)
HpCDDs (total)	0.000037	0.00010	0.0000010
OCDD	0.00012	0.00036	ND(0.0000029)
Total TEQs (WHO TEFs)	0.000012	0.000039	0.00000071
Inorganics		1 0.00000	0.00000
Antimony	ND(6.00)	ND(6.00)	ND(6.00)
Arsenic	7.80	9.60	3.40
Barium	38.0	64.0	ND(20.0)
Beryllium	ND(0.500)	1.20	ND(0.500)
Cadmium	ND(0.500)	1.90	0.720
Chromium	10.0	16.0	9.20
Cobalt	8.80	13.0	9.80
Copper	37.0	45.0	21.0
Cyanide	0.160	0.390	ND(0.120)
Lead	110	85.0	12.0
Mercury	0.290	0.410	ND(0.120)
Nickel	15.0	22.0	14.0
Selenium	ND(1.00)	1.10 B	ND(1.00)
Silver	ND(1.00)	0.790 B	ND(1.00)
Sulfide	26.0	16.0 J	22.0 J
Thallium	ND(2.00)	ND(2.20)	ND(1.90)
Tin	ND(2.00) ND(10.0)	20.0	5.40 B
Vanadium	10.0	16.0	7.70
Zinc	92.0	140	50.0

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Lo		RAA13-H89	RAA13-H89	RAA13-H93
Sample De		6-10	8-10	6-10
Parameter Date (Collected:	10/23/02	10/23/02	09/30/02
/olatile Organics				
,2-Dibromo-3-chloropropane		NS	ND(0.0065) [ND(0.0063)]	NS
Acetone		NS	ND(0.026) [ND(0.025)]	NS
Benzene		NS	ND(0.0065) [ND(0.0063)]	NS
Chlorobenzene		NS	ND(0.0065) [ND(0.0063)]	NS
Tetrachloroethene		NS	ND(0.0065) [ND(0.0063)]	NS
oluene		NS	ND(0.0065) [ND(0.0063)]	NS
richloroethene		NS	ND(0.0065) [ND(0.0063)]	NS
Semivolatile Organics				
.2.4-Trichlorobenzene		ND(0.43) [ND(0.42)]	NS	NS
,2-Dichlorobenzene		ND(0.43) [ND(0.42)]	NS	NS
.3-Dichlorobenzene		ND(0.43) [ND(0.42)]	NS	NS
,4-Dichlorobenzene		ND(0.43) [ND(0.42)]	NS	NS
2,4-Dimethylphenol		ND(0.43) [ND(0.42)]	NS	NS
2,4-Dinitrotoluene		ND(0.43) [ND(0.42)]	NS	NS
2-Chloronaphthalene		ND(0.43) [ND(0.42)]	NS	NS
2-Chlorophenol		ND(0.43) [ND(0.42)]	NS	NS
2-Methylnaphthalene		ND(0.43) [ND(0.42)]	NS	NS
2-Methylphenol		ND(0.43) [ND(0.42)]	NS .	NS
3&4-Methylphenol		ND(0.87) [ND(0.84)]	NS	NS
,3'-Dichlorobenzidine		ND(0.87) [ND(0.84)]	NS	NS
-Chloro-3-Methylphenol		ND(0.43) [ND(0.42)]	NS	NS
l-Chloroaniline		ND(0.43) [ND(0.42)]	NS	NS
I-Nitrophenol		ND(2.2) [ND(2.1)]	NS	NS
Acenaphthene		ND(0.43) [ND(0.42)]	NS	NS
Acenaphthylene		ND(0.43) [ND(0.42)]	NS	NS
Aniline		ND(0.43) [ND(0.42)]	NS NS	NS
Anthracene	•	ND(0.43) [ND(0.42)]	NS NS	NS
Benzo(a)anthracene		ND(0.43) [ND(0.42)]	NS	NS
Benzo(a)pyrene		ND(0.43) [ND(0.42)]	NS	NS
Benzo(b)fluoranthene		ND(0.43) [ND(0.42)]	NS NS	NS
Benzo(g,h,i)perylene		ND(0.43) [ND(0.42)]	NS NS	NS
Benzo(k)fluoranthene		ND(0.43) [ND(0.42)]	NS NS	NS
ois(2-Ethylhexyl)phthalate		ND(0.43) [ND(0.41)]	NS NS	NS
Chrysene		ND(0.43) [ND(0.42)]	NS	NS
Dibenzo(a,h)anthracene		ND(0.43) [ND(0.42)]	NS	NS
Dibenzofuran		ND(0.43) [ND(0.42)]	NS NS	NS
Di-n-Butylphthalate		ND(0.43) [ND(0.42)]	NS NS	NS
Fluoranthene		ND(0.43) [ND(0.42)]	NS NS	NS
Fluorene		ND(0.43) [ND(0.42)]	NS NS	NS
ndeno(1,2,3-cd)pyrene		ND(0.43) [ND(0.42)]	NS NS	NS
Naphthalene		ND(0.43) [ND(0.42)]	NS NS	NS
N-Nitroso-di-n-propylamine		ND(0.43) [ND(0.42)]	NS NS	NS
Pentachlorophenol		ND(2.2) [ND(2.1)]	NS NS	NS
Phenanthrene		ND(0.43) [ND(0.42)]	NS	NS NS
Phenol		ND(0.43) [ND(0.42)]	NS	NS
Pronamide		ND(0.43) [ND(0.42)]	NS NS	NS
Pyrene		ND(0.43) [ND(0.42)]	NS NS	NS NS

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location I		RAA13-H89	RAA13-H93
Sample Depth(Fee		8-10	6-10
Parameter Date Collecte	d: 10/23/02	10/23/02	09/30/02
Furans			
2,3,7,8-TCDF	0.00000031 J [0.00000032 J]	NS	ND(0.00000042)
TCDFs (total)	0.0000022 [0.0000024]	NS	ND(0.00000042)
1,2,3,7,8-PeCDF	0.00000019 J [ND(0.00000028) X]	NS	0.0000032 J
2,3,4,7,8-PeCDF	0.00000062 J [0.00000069 J]	NS	ND(0.00000050) X
PeCDFs (total)	0.0000057 [0.0000075]	NS	0.000016
1,2,3,4,7,8-HxCDF	0.00000060 J [0.00000058 J]	NS	ND(0.0000014) X
1,2,3,6,7,8-HxCDF	ND(0.00000048) X [0.00000051 J]	NS	ND(0.00000074)
1,2,3,7,8,9-HxCDF	ND(0.00000027) [ND(0.00000026)]	NS	ND(0.00000088)
2,3,4,6,7,8-HxCDF	0.00000067 J [0.00000086 J]	NS	ND(0.00000076)
HxCDFs (total)	0.0000079 [0.0000099]	NS	0.000011
1,2,3,4,6,7,8-HpCDF	0.0000010 J [0.0000011 J]	NS	0.0000015 J
1,2,3,4,7,8,9-HpCDF	ND(0.00000025) [ND(0.00000030)]	NS	ND(0.00000070)
HpCDFs (total)	0.0000025 [0.0000026]	NS	0.000015
OCDF	0.0000011 J [0.0000011 J]	NS	0.0000024 J
Dioxins			
2,3,7,8-TCDD	ND(0.00000012) X [ND(0.00000011)]	NS	ND(0.00000029)
TCDDs (total)	ND(0.00000021) [ND(0.00000016)]	NS	ND(0.00000029)
1,2,3,7,8-PeĆDD	ND(0.000000090) X [ND(0.00000026)]	NS	ND(0.0000054)
PeCDDs (total)	ND(0.00000029) [0.00000011]	NS	ND(0.00000090)
1,2,3,4,7,8-HxCDD	ND(0.00000027) [ND(0.00000026)]	NS	ND(0.00000054)
1,2,3,6,7,8-HxCDD	0.00000015 J [ND(0.00000026)]	NS	ND(0.0000054)
1,2,3,7,8,9-HxCDD	0.0000012 J [ND(0.0000026)]	NS	ND(0.0000054)
HxCDDs (total)	0.00000039 [ND(0.00000044)]	NS	ND(0.0000014)
1,2,3,4,6,7,8-HpCDD	ND(0.00000040) [ND(0.00000036) X]	NS	ND(0.0000016) X
HpCDDs (total)	ND(0.0000068) [ND(0.0000022)]	NS	0.0000011
OCDD	ND(0.0000015) [ND(0.00000019)]	NS	ND(0.0000040)
Total TEQs (WHO TEFs)	0.00000067 [0.00000083]	NS	0.00000087
Inorganics			
Antimony	ND(6.00) [ND(6.00)]	NS	NS
Arsenic	3.10 [2.50]	NS	NS NS
Barium	ND(20.0) [ND(20.0)]	NS	NS
Beryllium	ND(0.500) [ND(0.500)]	NS	NS
Cadmium	0.560 [ND(0.500)]	NS	NS
Chromium	7.00 [6.60]	NS	NS
Cobalt	9.80 [8.80]	NS	NS
Copper	19.0 [19.0]	NS	NS
Cyanide	ND(0.130) [ND(0.120)]	NS	NS
Lead	7.30 [7.90]	NS	NS
Mercury	ND(0.130) [ND(0.120)]	NS	NS
Nickel	14.0 [12.0]	NS	NS
Selenium	ND(1.00) [ND(1.00)]	NS	NS NS
Silver	ND(1.00) [ND(1.00)]	NS	NS NS
Sulfide	27.0 J [12.0 J]	NS	NS
Thallium	ND(1.90) [ND(1.90)]	NS NS	NS NS
Tin	4.90 B [4.50 B]	NS NS	NS NS
Vanadium	6.00 [5.10]	NS NS	NS NS
Zinc	47.0 [44.0]	NS	NS NS

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:	RAA13-H93	RAA13-I92	RAA13-J92	RAA13-Z84
Sample Depth(Feet): Parameter Date Collected:	10-15 09/30/02	0-1 10/15/02	0-1 10/15/02	0-1 10/04/02
Volatile Organics	09/30/02	10/13/02	10/15/02	10/04/02
1,2-Dibromo-3-chloropropane	NS	ND/O OOGE)	ND(0.0067)	ND(0.0070) 1
Acetone	NS NS	ND(0.0066) 0.012 J	ND(0.0067) 0.014 J	ND(0.0072) J ND(0.029) J
Benzene	NS NS	ND(0.0066)	ND(0.0067)	ND(0.029) J ND(0.0072) J
Chlorobenzene	NS NS	ND(0.0066)		
Tetrachloroethene	NS NS		ND(0.0067)	ND(0.0072) J
Toluene	NS NS	ND(0.0066) ND(0.0066)	ND(0.0067) ND(0.0067)	ND(0.0072) J
Trichloroethene	NS NS	ND(0.0066)	ND(0.0067)	ND(0.0072) J ND(0.0072) J
L	NO	ND(0.0000)	(10000) או	ND(0.0072) 3
Semivolatile Organics	110	1 15/5/10	100/0 (5)	T 1/5 (0.10)
1,2,4-Trichlorobenzene	NS NS	ND(0.44)	ND(0.45)	ND(0.48)
1,2-Dichlorobenzene	NS NS	ND(0.44)	ND(0.45)	ND(0.48)
1,3-Dichlorobenzene	NS	ND(0.44)	ND(0.45)	ND(0.48)
1,4-Dichlorobenzene	NS NS	ND(0.44)	ND(0.45)	ND(0.48)
2,4-Dimethylphenol	NS NS	ND(0.44)	ND(0.45)	ND(0.48)
2,4-Dinitrotoluene	NS NS	ND(0.44)	ND(0.45)	ND(0.48)
2-Chloronaphthalene	NS	ND(0.44)	ND(0.45)	ND(0.48)
2-Chiorophenol	NS	ND(0.44)	ND(0.45)	ND(0.48)
2-Methylnaphthalene	NS	ND(0.44)	ND(0.45)	ND(0.48)
2-Methylphenol	NS	ND(0.44)	ND(0.45)	ND(0.48)
3&4-Methylphenol	NS	ND(0.89)	ND(0.90)	ND(0.96)
3,3'-Dichlorobenzidine	NS	ND(0.89)	ND(0.90)	ND(0.96)
4-Chloro-3-Methylphenol	NS	ND(0.44)	ND(0.45)	ND(0.48)
4-Chloroaniline	NS	ND(0.44)	ND(0.45)	ND(0.48)
4-Nitrophenol	NS	ND(2.2)	ND(2.3)	ND(2.4)
Acenaphthene	NS	ND(0.44)	ND(0.45)	ND(0.48)
Acenaphthylene	NS	ND(0.44)	ND(0.45)	0.14 J
Aniline	NS	0.16 J	ND(0.45)	0.28 J
Anthracene	NS	ND(0.44)	ND(0.45)	ND(0.48)
Benzo(a)anthracene	NS	0.092 J	ND(0.45)	0.15 J
Benzo(a)pyrene	NS	0.11 J	ND(0.45)	0.13 J
Benzo(b)fluoranthene	NS	ND(0.44)	0.12 J	0.19 J
Benzo(g,h,i)perylene	NS	ND(0.44)	ND(0.45)	ND(0.48)
Benzo(k)fluoranthene	NS	ND(0.44)	ND(0.45)	0.090 J
bis(2-Ethylhexyl)phthalate	NS	ND(0.44)	ND(0.44)	ND(0.47)
Chrysene	NS	0.17 J	0.096 J	0.15 J
Dibenzo(a,h)anthracene	NS	ND(0.44)	ND(0.45)	ND(0.48)
Dibenzofuran	NS	ND(0.44)	ND(0.45)	ND(0.48)
Di-n-Butylphthalate	NS	ND(0.44)	ND(0.45)	ND(0.48)
Fluoranthene	NS	ND(0.44)	ND(0.45)	0.35 J
Fluorene	NS	ND(0.44)	ND(0.45)	ND(0.48)
Indeno(1,2,3-cd)pyrene	NS	ND(0.44)	ND(0.45)	ND(0.48)
Naphthalene	NS	ND(0.44)	ND(0.45)	ND(0.48)
N-Nitroso-di-n-propylamine	NS	ND(0.44)	ND(0.45)	ND(0.48)
Pentachlorophenol	NS	ND(2.2)	ND(2.3)	ND(2.4)
Phenanthrene	NS	0.16 J	ND(0.45)	0.22 J
Phenol	NS	ND(0.44)	ND(0.45)	ND(0.48)
Pronamide	NS	ND(0.44)	ND(0.45)	ND(0.48)
Pyrene	NS	0.34 J	0.18 J	0.39 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

S	Sample/Location ID: Sample Depth(Feet):	RAA13-H93 10-15	RAA13-I92 0-1	RAA13-J92 0-1	RAA13-Z84 0-1
Parameter	Date Collected:	09/30/02	10/15/02	10/15/02	10/04/02
Furans		NE/O ODGGGGGG	0.00000434	0.0000000	0.000000.10
2,3,7,8-TCDF		ND(0.00000037)	0.000034 YI	0.0000066 Y	0.000066 YI
TCDFs (total)		ND(0.00000037)	0.000291	0.000055	0.00062 I
1,2,3,7,8-PeCDF		ND(0.00000096)	0.000011	ND(0.0000032) X	0.000048
2,3,4,7,8-PeCDF		ND(0.00000092)	0.000019	0.0000052 J	0.000077
PeCDFs (total)		ND(0.00000094) Q	0.000211	0.000059	0.00070
1,2,3,4,7,8-HxCDF		ND(0.00000061)	0.000016	0.0000048 J	0.00015 I
1,2,3,6,7,8-HxCDF		ND(0.00000061)	0.000010	0.0000031 J	0.000090
1,2,3,7,8,9-HxCDF		ND(0.00000061)	0.0000021 J	ND(0.00000073) X	0.000017
2,3,4,6,7,8-HxCDF		ND(0.00000061)	0.000012	0.0000044 J	0.000051
HxCDFs (total)		ND(0.00000061)	0.00020	0.000061	0.00083 I
1,2,3,4,6,7,8-HpCDF		0.00000083 J	0.000034	0.0000088	0.00019
1,2,3,4,7,8,9-HpCDF		ND(0.00000061)	0.0000034 J	0.0000014 J	0.000037
HpCDFs (total)		0.00000083	0.000082	0.000021	0.00035
OCDF		0.0000022 J	0.000074	0.000010 J	0.00016
Dioxins		ND(0.00000042)	L NID/0 00000074) V	ND(0.00000030)	0.0000044
2,3,7,8-TCDD		ND(0.00000042)	ND(0.00000071) X 0.0000076	ND(0.00000039) 0.0000066	0.0000011
TCDDs (total)					0.000013
1,2,3,7,8-PeCDD		ND(0.00000061)	ND(0.0000012) X	ND(0.00000054)	0.0000022 J
PeCDDs (total)		ND(0.00000077)	0.0000055	0.0000012	0.000026
1,2,3,4,7,8-HxCDD		ND(0.00000063)	0.00000081 J	ND(0.00000071)	0.0000020 J
1,2,3,6,7,8-HxCDD		ND(0.00000063)	0.0000020 J	0.00000072 J	0.0000037
1,2,3,7,8,9-HxCDD		ND(0.00000061)	0.0000012 J	ND(0.00000065)	0.0000040
HxCDDs (total)		ND(0.00000062)	0.000018	0.0000043	0.000052
1,2,3,4,6,7,8-HpCDD		ND(0.0000015) X	0.000039	0.0000074	0.000026
HpCDDs (total)		0.00000093	0.00012	0.000020	0.000053
OCDD		ND(0.0000026)	0.00046	0.000054	0.00014
Total TEQs (WHO TER	-S)	0.0000010	0.000020	0.0000054	0.000085
Inorganics					1/5/0.00
Antimony		NS NS	1.20 B	ND(6.00)	ND(6.00)
Arsenic		NS NS	8.70	5.50	5.40
Barium		NS NS	33.0	ND(20.0)	52.0
Beryllium		NS NO	ND(0.500)	0.170 B	0.620
Cadmium		NS NS	ND(0.500)	ND(0.500)	1.40
Chromium		NS NG	8.50	4.50	15.0
Cobalt		NS NC	ND(5.00)	ND(5.00)	10.0
Copper		NS NC	27.0	11.0	46.0
Cyanide		NS NS	0.160	0.110 B	0.140
Lead		NS NS	73.0	24.0 0.100 B	35.0 0.190
Mercury		NS NS	0.280	5.20	
Nickel			9.40 ND(4.00) I		17.0
Selenium		NS NS	ND(1.00) J	ND(1.00) J	ND(1.10)
Silver			ND(1.00)	ND(1.00)	0.850 B
Sulfide		NS NC	13.0	13.0	34.0
Thallium		NS NS	ND(2.00)	ND(2.00)	ND(2.20)
Tin		NS NS	ND(10.0)	5.30 B	ND(11.0)
Vanadium		NS NS	12.0	9.70	13.0
Zinc		NS	110	26.0	220

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID Sample Depth(Feet)	1-3	RAA13-Z84 3-6	RAA13-Z84 4-6	RAA13-Z85 0-1	RAA13-Z85 1-3
Parameter Date Collected	10/04/02	10/04/02	10/04/02	10/04/02	10/04/02
Volatile Organics				7	
1,2-Dibromo-3-chloropropane	ND(0.0068)	NS	ND(0.0071)	ND(0.0076)	ND(0.0070)
Acetone	ND(0.027)	NS	ND(0.028)	ND(0.030)	ND(0.028)
Benzene	ND(0.0068)	NS	ND(0.0071)	ND(0.0076)	ND(0.0070)
Chlorobenzene	ND(0.0068)	NS	ND(0.0071)	ND(0.0076)	ND(0.0070)
Tetrachloroethene	ND(0.0068)	NS	ND(0.0071)	ND(0.0076)	ND(0.0070)
Toluene	0.0050 J	NS	ND(0.0071)	ND(0.0076)	ND(0.0070)
Trichloroethene	ND(0.0068)	NS	ND(0.0071)	ND(0.0076)	ND(0.0070)
Semivolatile Organics					***
1,2,4-Trichlorobenzene	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
1,2-Dichlorobenzene	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
1,3-Dichlorobenzene	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
1,4-Dichlorobenzene	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
2,4-Dimethylphenol	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
2,4-Dinitrotoluene	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
2-Chloronaphthalene	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
2-Chlorophenol	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
2-Methylnaphthalene	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
2-Methylphenol	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
3&4-Methylphenol	ND(0.90)	ND(0.96)	NS	ND(1.0)	ND(0.94)
3,3'-Dichlorobenzidine	ND(0.90)	ND(0.96)	NS	ND(1.0)	ND(0.94)
4-Chloro-3-Methylphenol	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
4-Chloroaniline	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
4-Nitrophenol	ND(2.3)	ND(2.4)	NS	ND(2.6)	ND(2.4)
Acenaphthene	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
Acenaphthylene	0.12 J	ND(0.48)	NS	ND(0.51)	ND(0.47)
Aniline	0.14 J	ND(0.48)	NS	0.29 J	ND(0.47)
Anthracene	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
Benzo(a)anthracene	0.17 J	ND(0.48)	NS	0.13 J	ND(0.47)
Benzo(a)pyrene	0.17 J	ND(0.48)	NS	0.12 J	ND(0.47)
Benzo(b)fluoranthene	0.22 J	ND(0.48)	NS	0.18 J	ND(0.47)
Benzo(g,h,i)perylene	0.14 J	ND(0.48)	NS	ND(0.51)	ND(0.47)
Benzo(k)fluoranthene	0.095 J	ND(0.48)	NS	ND(0.51)	ND(0.47)
bis(2-Ethylhexyl)phthalate	ND(0.44)	ND(0.47)	NS	ND(0.50)	ND(0.46)
Chrysene	0.23 J	ND(0.48)	NS	0.16 J	ND(0.47)
Dibenzo(a,h)anthracene	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
Dibenzofuran	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
Di-n-Butylphthalate	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
Fluoranthene	0.25 J	ND(0.48)	NS	0.29 J	ND(0.47)
Fluorene	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
Indeno(1,2,3-cd)pyrene	0.091 J	ND(0.48)	NS	ND(0.51)	ND(0.47)
Naphthalene	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
N-Nitroso-di-n-propylamine	ND(0.45)	ND(0.48)	NS	ND(0.51)	ND(0.47)
Pentachlorophenol	ND(2.3)	ND(2.4)	NS NS	ND(2.6)	ND(2.4)
Phenanthrene	0.13 J	ND(0.48)	NS	0.17 J	ND(0.47)
Phenol	ND(0.45)	ND(0.48)	NS NS	0.13 J	ND(0.47) ND(0.47)
Pronamide	ND(0.45)	ND(0.48)	NS NS	ND(0.51)	ND(0.47)
Pyrene	0.30 J	ND(0.48)	NS NS	0.28 J	ND(0.47) ND(0.47)

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Parameter Furans 2,3,7,8-TCDF TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF	Date Collected:	0.000055 YI 0.00052 I 0.000029 0.000040 0.00040 I 0.000061 0.000032 0.0000082	0.0000031 YQI 0.000016 0.000010 J 0.000014 J 0.000014 0.000018 J	NS NS NS NS NS	0.00018 YI 0.0017 I 0.00013 0.00020	0.00000055 J 0.0000040 0.0000043 J
2,3,7,8-TCDF TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF		0.00052 I 0.000029 0.000040 0.00040 I 0.000061 0.000032	0.000016 0.0000010 J 0.0000014 J 0.000014 0.0000018 J	NS NS NS	0.0017 I 0.00013 0.00020	0.0000040 0.00000043 J
TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF		0.00052 I 0.000029 0.000040 0.00040 I 0.000061 0.000032	0.000016 0.0000010 J 0.0000014 J 0.000014 0.0000018 J	NS NS NS	0.0017 I 0.00013 0.00020	0.0000040 0.00000043 J
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF		0.000029 0.000040 0.00040 I 0.000061 0.000032	0.0000010 J 0.0000014 J 0.000014 0.0000018 J	NS NS	0.00013 0.00020	0.00000043 J
2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF		0.000040 0.00040 I 0.000061 0.000032	0.000014 J 0.000014 0.000018 J	NS	0.00020	
PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF		0.00040 I 0.000061 0.000032	0.000014 0.0000018 J			
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF		0.000061 0.000032	0.0000018 J	NS		0.00000041 J
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF		0.000032			0.0018 QI	0.0000040
1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF			0.00000000	NS	0.00044	0.00000062 J
2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF		0.0000082	0.00000090 J	NS	0.00024 I	0.00000044 J
HxCDFs (total) 1,2,3,4,6,7,8-HpCDF			0.00000038 J	NS	0.000056	ND(0.00000025)
1,2,3,4,6,7,8-HpCDF		0.000027	0.0000010 J	NS	0.00014	0.00000028 J
	1	0.000441	0.000016	NS	0.0021	0.0000038
1,2,3,4,7,8,9-HpCDF		0.00011	0.0000035	NS	0.00048	0.00000098 J
		0.000014	0.00000055 J	NS	0.00011	0.00000024 J
HpCDFs (total)		0.00022	0.0000075	NS	0.00083	0.000019
OCDF		0.00014	0.0000046 J	NS	0.00045	0.0000012 J
Dioxins						
2,3,7,8-TCDD		0.00000076 J	ND(0.00000023)	NS	0.0000021	ND(0.00000010)
TCDDs (total)		0.000018	0.00000018	NS	0.000037	0.0000010)
1,2,3,7,8-PeCDD		0.0000029	0.00000017 J	NS	0.0000055	ND(0.00000025)
PeCDDs (total)		0.000026	0.0000018	NS	0.000067 Q	0.0000014
1,2,3,4,7,8-HxCDD		0.0000026	ND(0.00000028)	NS	0.000007 &	ND(0.0000014
1,2,3,6,7,8-HxCDD		0.0000053	ND(0.00000026) X	NS	0.0000096	ND(0.00000025)
1,2,3,7,8,9-HxCDD		0.0000040	0.00000023 J	NS	0.0000030	0.000000023)
HxCDDs (total)		0.000062	0.0000023	NS	0.00013	0.000000123
1,2,3,4,6,7,8-HpCDD		0.000072	0.0000028	NS	0.000069	0.0000012 0.0000010 J
HpCDDs (total)		0.00014	0.0000056	NS	0.00014	0.00000103
OCDD		0.00090	0.000028	NS NS	0.00014	ND(0.000011)
Total TEQs (WHO TE	Fs)	0.000047	0.000028	NS NS	0.00033	0.00000011)
Inorganics		0.0000 11	0.0000010	140	0.00023	0.0000000
Antimony	T	1.80 B	ND(6.00)	NS	1.60 B	1.60 B
Arsenic		8.00	3.80	NS NS	6.40	10.0
Barium		77.0	39.0	NS	64.0	96.0
Beryllium		ND(0.500)	ND(0.500)	NS NS	ND(0.500)	0.640
Cadmium		0.960	ND(0.500)	NS	0.800	0.870
Chromium		44.0	15.0	NS NS	14.0	21.0
Cobalt		12.0	8.60	NS NS	12.0	19.0
Copper		65.0	20.0	NS NS	140	52.0
Cyanide		ND(0.140)	ND(0.140)	NS NS	0.180	0.110 B
Lead		72.0	21.0	NS NS	52.0	
Mercury		0.610	0.280	NS NS	0.170	27.0 ND(0.140)
Nickel		19.0	13.0	NS NS	19.0	ND(0.140) 30.0
Selenium		ND(1.00)	ND(1.10)	NS NS	ND(1.10)	ND(1.00)
Silver		0.980 B	ND(1.10)	NS NS	ND(1.10)	
Sulfide		24.0	32.0	NS NS	32.0	ND(1.00)
Thallium		ND(2.00)			32.0 ND(2.30)	ND(7.00)
Tin		13.0	ND(2.10)	NS NS		ND(2.10)
Vanadium			ND(11.0)	NS NS	ND(11.0)	6.20 B
Vanadium Zinc		12.0 140	9.80 58.0	NS NS	14.0 110	15.0 100

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample/Location ID: Sample Depth(Feet):	RAA13-Z85 3-6	RAA13-Z85 4-6	RAA13-Z88 0-1	RAA13-Z90 0-1	RAA13-Z90 1-3
Parameter	Date Collected:	10/04/02	10/04/02	10/04/02	10/16/02	10/16/02
Volatile Organics						
1,2-Dibromo-3-chloro	propane	NS	ND(0.0065)	ND(0.0075)	ND(0.0068)	ND(0.0067)
Acetone		NS	ND(0.026)	ND(0.030) J	0.0071 J	ND(0.027)
Benzene		NS	ND(0.0065)	ND(0.0075) J	ND(0.0068)	ND(0.0067)
Chlorobenzene		NS	ND(0.0065)	ND(0.0075) J	ND(0.0068)	ND(0.0067)
Tetrachloroethene		NS	ND(0.0065)	ND(0.0075) J	ND(0.0068)	ND(0.0067)
Toluene		NS	ND(0.0065)	ND(0.0075) J	ND(0.0068)	ND(0.0067)
Trichloroethene	<u> </u>	NS	ND(0.0065)	ND(0.0075) J	ND(0.0068)	ND(0.0067)
Semivolatile Organi	cs					
1,2,4-Trichlorobenzer	ne	ND(0.43)	NS	0.41 J	0.46	0.97
1,2-Dichlorobenzene		ND(0.43)	NS	ND(0.50)	ND(0.45)	ND(0.45)
1,3-Dichlorobenzene		ND(0.43)	NS	ND(0.50)	ND(0.45)	ND(0.45)
1,4-Dichlorobenzene		ND(0.43)	NS	ND(0.50)	ND(0.45)	ND(0.45)
2,4-Dimethylphenol		ND(0.43)	NS	ND(0.50)	ND(0.45)	ND(0.45)
2,4-Dinitrotoluene		ND(0.43)	NS	ND(0.50)	ND(0.45)	ND(0.45)
2-Chloronaphthalene		ND(0.43)	NS	ND(0.50)	ND(0.45)	ND(0.45)
2-Chlorophenol		ND(0.43)	NS	ND(0.50)	ND(0.45)	ND(0.45)
2-Methylnaphthalene		ND(0.43)	NS	ND(0.50)	ND(0.45)	ND(0.45)
2-Methylphenol		ND(0.43)	NS	ND(0.50)	ND(0.45)	ND(0.45)
3&4-Methylphenol		ND(0.87)	NS	ND(1.0)	ND(0.91)	ND(0.90)
3,3'-Dichlorobenzidin	е	ND(0.87)	NS	ND(1.0)	ND(0.91)	ND(0.90)
4-Chloro-3-Methylphe	enol	ND(0.43)	NS	ND(0.50)	ND(0.45)	ND(0.45)
4-Chloroaniline		ND(0.43)	NS	ND(0.50)	ND(0.45)	ND(0.45)
4-Nitrophenol		ND(2.2)	NS	ND(2.5)	ND(2.3)	ND(2.3)
Acenaphthene		ND(0.43)	NS	ND(0.50)	ND(0.45)	0.79
Acenaphthylene		ND(0.43)	NS	0.14 J	ND(0.45)	ND(0.45)
Aniline		ND(0.43)	NS	1.5	1.4	0.48
Anthracene		ND(0.43)	NS	0.27 J	ND(0.45)	ND(0.45)
Benzo(a)anthracene		ND(0.43)	NS	0.77	0.29 J	ND(0.45)
Benzo(a)pyrene		ND(0.43)	NS	0.77	0.27 J	0.17 J
Benzo(b)fluoranthene	>	ND(0.43)	NS	0.93	0.38 J	0.28 J
Benzo(g,h,i)perylene		ND(0.43)	NS	0.65	0.25 J	0.17 J
Benzo(k)fluoranthene		ND(0.43)	NS	0.38 J	0.13 J	0.11 J
bis(2-Ethylhexyl)phth	alate	ND(0.43)	NS	0.26 J	ND(0.45)	0.44 J
Chrysene		ND(0.43)	NS	0.70	0.38 J	ND(0.45)
Dibenzo(a,h)anthrace	ene	ND(0.43)	NS	0.13 J	ND(0.45)	ND(0.45)
Dibenzofuran		ND(0.43)	NS	ND(0.50)	ND(0.45)	ND(0.45)
Di-n-Butylphthalate		ND(0.43)	NS	ND(0.50)	ND(0.45)	ND(0.45)
Fluoranthene		ND(0.43)	NS	1.5	0.59	0.40 J
Fluorene		ND(0.43)	NS	ND(0.50)	ND(0.45)	ND(0.45)
Indeno(1,2,3-cd)pyrei	ne	ND(0.43)	NS	0.49 J	0.20 J	0.12 J
Naphthalene		ND(0.43)	NS	0.14 J	ND(0.45)	ND(0.45)
N-Nitroso-di-n-propyl	amine	ND(0.43)	NS	ND(0.50)	ND(0.45)	ND(0.45)
Pentachlorophenol		ND(2.2)	NS	ND(2.5)	ND(2.3)	ND(2.3)
Phenanthrene		ND(0.43)	NS	0.75	0.42 J	0.26 J
Phenol		ND(0.43)	NS	0.13 J	0.098 J	0.20 J 0.11 J
Pronamide		ND(0.43)	NS	ND(0.50)	ND(0.45)	ND(0.45)
Pyrene		ND(0.43)	NS NS	1.4	0.67	0.35 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample/Location ID:	RAA13-Z85	RAA13-Z85	RAA13-Z88	RAA13-Z90	RAA13-Z90
Sample Depth(Feet):	3-6	4-6	0-1	0-1	1-3
Parameter Date Collected:	10/04/02	10/04/02	10/04/02	10/16/02	10/16/02
Furans					
2,3,7,8-TCDF	0.00000012 J	NS	0.0018 Y	0.0019 YEJ	0.0040 YEIJ
TCDFs (total)	0.00000023	NS	0.015	0.017 Q	0.041 QI
1,2,3,7,8-PeCDF	0.00000011 J	NS	0.0019	0.0016	0.0034 EJ
2,3,4,7,8-PeCDF	0.000000088 J	NS	0.0025	0.0028 EJ	0.0080 EIJ
PeCDFs (total)	0.00000049	NS	0.024 Q	0.022 Q	0.059 QI
1,2,3,4,7,8-HxCDF	0.00000016 J	NS	0.00361	0.0069 EJ	0.020 EIJ
1,2,3,6,7,8-HxCDF	ND(0.00000015) X	NS	0.0036 I	0.0040 EJ	0.011 EIJ
1,2,3,7,8,9-HxCDF	ND(0.00000023)	NS	0.00061	0.0011	0.0039 EJ
2,3,4,6,7,8-HxCDF	ND(0.00000023)	NS	0.0015	0.0016	0.0059 EJ
HxCDFs (total)	0.00000041	NS	0.028 I	0.027 I	0.077 I
1,2,3,4,6,7,8-HpCDF	0.00000016 J	NS	0.0085	0.0062 EJ	0.014 EIJ
1,2,3,4,7,8,9-HpCDF	ND(0.00000023)	NS	0.0011	0.0016	0.0060 EJ
HpCDFs (total)	0.00000016	NS	0.012 l	0.010	0.028 I
OCDF	0.00000020 J	NS	0.0063	0.0077 EJ	0.015 EIJ
Dioxins					
2,3,7,8-TCDD	ND(0.000000092)	NS	0.0053	0.000012	0.000026 J
TCDDs (total)	0.00000025	NS	0.0056	0.00034 Q	0.00111
1,2,3,7,8-PeCDD	ND(0.00000023)	NS	0.000047 Q	ND(0.000050)	ND(0.00012) X
PeCDDs (total)	0.00000024	NS	0.00043	0.00045	0.0014 Q
1,2,3,4,7,8-HxCDD	ND(0.00000023)	NS	0.000052	0.000038	0.00011
1,2,3,6,7,8-HxCDD	ND(0.00000023)	NS	0.000090	0.000070	0.00019
1,2,3,7,8,9-HxCDD	ND(0.00000023)	NS	0.000061	0.000064	0.00015
HxCDDs (total)	ND(0.00000060)	NS	0.0011 Q	0.00090	0.0028
1,2,3,4,6,7,8-HpCDD	0.00000044 J	NS	0.00056	0.00044	0.0010
HpCDDs (total)	0.0000083	NS	0.0011	0.00087	0.0022
OCDD	ND(0.0000036)	NS	0.0013	0.0013	0.0022
Total TEQs (WHO TEFs)	0.0000031	NS	0.0079	0.0032	0.0090
Inorganics					
Antimony	1.40 B	NS	ND(6.00)	ND(6.00)	ND(6.00)
Arsenic	6.90	NS	8.70	4.10	5.30
Barium	32.0	NS	210	140	160
Beryllium	ND(0.500)	NS	ND(0.500)	ND(0.500)	ND(0.500)
Cadmium	0.520	NS	2.20	2.10	1.40
Chromium	7.40	NS	29.0	14.0	29.0
Cobalt	8.50	NS	8.20	6.00	ND(5.00)
Copper	23.0	NS	490	460	1800
Cyanide	ND(0.130)	NS	0.120 B	0.300	0.210
Lead	10.0	NS	830	500	410
Mercury	ND(0.130)	NS	0.560	0.600	0.540
Nickel	14.0	NS	25.0	25.0	31.0
Selenium	ND(1.00)	NS NS	ND(1.10)	ND(1.00) J	ND(1.00) J
Silver	ND(1.00)	NS	1.40	0.450 B	0.500 B
Sulfide	21.0	NS NS	41.0	33.0	24.0
Thallium	ND(1.90)	NS NS	ND(2.20)	ND(2.00)	ND(2.00)
Tin	4.40 B	NS NS	70.0	26.0	71.0
Vanadium	6.40	NS NS	11.0	13.0	8.20
Zinc	44.0	NS NS		660 J	
Line	<u> </u>	I GVI	600	00U J	1200 J

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample/Location ID: Sample Depth(Feet):	RAA13-Z92 0-1
Parameter	Date Collected:	09/30/02
Volatile Organics		
1,2-Dibromo-3-chlor	opropane	NS
Acetone		NS
Benzene		NS
Chlorobenzene		NS
Tetrachloroethene		NS
Toluene		NS
Trichloroethene		NS
Semivolatile Organ	ics	
1,2,4-Trichlorobenze		NS
1,2-Dichlorobenzene		NS
1,3-Dichlorobenzene	·	NS
1,4-Dichlorobenzene		NS
2,4-Dimethylphenol		NS
2,4-Dinitrotoluene		NS
2-Chloronaphthalene		NS NS
2-Chlorophenol		NS NS
2-Methylnaphthalene		NS NS
2-Methylphenol		NS NS
3&4-Methylphenol		NS
3,3'-Dichlorobenzidir	ne	NS
4-Chloro-3-Methylph		NS
4-Chloroaniline		NS
4-Nitrophenol		NS
Acenaphthene		NS
Acenaphthylene		NS
Aniline		NS
Anthracene		NS
Benzo(a)anthracene		NS
Benzo(a)pyrene		NS
Benzo(b)fluoranthen	a	NS
Benzo(g,h,i)perylene		NS
Benzo(k)fluoranthene		NS
ois(2-Ethylhexyl)phth		NS
Chrysene		NS
Dibenzo(a,h)anthrac	ene	NS
Dibenzofuran		NS
Di-n-Butylphthalate		NS
Fluoranthene		NS
luorene		NS
ndeno(1,2,3-cd)pyre	ne	NS
Vaphthalene		NS
N-Nitroso-di-n-propyl	amine	NS
Pentachlorophenol		NS
Phenanthrene		NS
Phenol		NS
Pronamide		NS
Pyrene		NS

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample/Location ID:	
_	Sample Depth(Feet):	
Parameter	Date Collected:	09/30/02
Furans		
2,3,7,8-TCDF		0.0000069 Y
TCDFs (total)		0.000062 Q
1,2,3,7,8-PeCDF		0.0000049 JQ
2,3,4,7,8-PeCDF		0.0000085 Q
PeCDFs (total)		0.000040 Q
1,2,3,4,7,8-HxCDF		0.000019
1,2,3,6,7,8-HxCDF		0.000014
1,2,3,7,8,9-HxCDF		0.0000020 JQ
2,3,4,6,7,8-HxCDF		0.0000029 J
HxCDFs (total)		0.000084 Q
1,2,3,4,6,7,8-HpCDF		0.000018
1,2,3,4,7,8,9-HpCDF		0.0000051 J
HpCDFs (total)		0.000036
OCDF		0.000023
Dioxins		
2,3,7,8-TCDD		ND(0.00000099) X
TCDDs (total)		ND(0.00000033)
1,2,3,7,8-PeCDD		0.00000070 J
PeCDDs (total)		0.0000040 Q
1,2,3,4,7,8-HxCDD		ND(0.00000052)
1,2,3,6,7,8-HxCDD		0.00000089 J
1,2,3,7,8,9-HxCDD		0.0000024 JQ
HxCDDs (total)		0.000014 Q
1,2,3,4,6,7,8-HpCDD)	0.0000072
HpCDDs (total)		0.000016
OCDD		0.000026
Total TEQs (WHO T	EFs)	0.000011
Inorganics		
Antimony		NS
Arsenic		NS
Barium		NS
Beryllium		NS
Cadmium		NS
Chromium		NS
Cobalt		NS
Copper		NS
Cyanide		NS
Lead		NS
Mercury		NS
Nickel		NS
Selenium		NS
Silver		NS
Sulfide		NS
Thallium		NS
Tin		NS
Vanadium		NS
Zinc		NS

PRE-DESIGN INVESTIGATION REPORT FOR THE NEWELL STREET AREA II REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Notes:

- Samples were collected by Blasland Bouck & Lee, Inc., and were submitted to CT&E Environmental Services, Inc. for analysis of Appendix IX + 3 constituents.
- 2. Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan, General Electric Company, Pittsfield, Massachusetts, Blasland Bouck & Lee, Inc. (approved November 4, 2002 and resubmitted December 10, 2002).
- 3. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 4. NS Not Sampled Parameter was not requested on sample chain of custody form.
- 5. With the exception of dioxin/furans, only those constituents detected in at least one sample are summarized.
- 6. Total 2,3,7,8-TCDD toxicity equivalents (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) derived by the World Health Organization (WHO) and published by Van den Berg et al. in Environmental Health Perspectives 106(2), December 1998.
- 7. Duplicate sample results are presented in brackets.

Data Qualifiers:

Organics (volatiles, semivolatiles, dioxin/furans)

- E Analyte exceeded calibration range.
- I Polychlorinated Diphenyl Ether (PCDPE) Interference.
- J Indicates that the associated numerical value is an estimated concentration.
- Q Indicates the presence of quantitative interferences.
- X Estimated maximum possible concentration.
- Y 2,3,7,8-TCDF results have been confirmed on a DB-225 column.
- R Data was rejected due to a deficiency in the data generation process.

Inorganics

- B Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).
- J Indicates that the associated numerical value is an estimated concentration.